首页
AI Coding
NEW
沸点
课程
直播
活动
AI刷题
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
会员
登录
注册
确定删除此收藏集吗
删除后此收藏集将被移除
取消
确定删除
确定删除此文章吗
删除后此文章将被从当前收藏集中移除
取消
确定删除
编辑收藏集
名称:
描述:
0
/100
公开
当其他人关注此收藏集后不可再更改为隐私
隐私
仅自己可见此收藏集
取消
确定
Xgboost
订阅
天华乐飞
更多收藏集
微信扫码分享
微信
新浪微博
QQ
9篇文章 · 0订阅
XGboost数据比赛实战之调参篇(完整流程)
XGboost数据比赛实战之调参篇(完整流程)
XGBoost基本原理
最基本的差距就在于XGBoost比GBDT多了两项泰勒展开式。具体这个泰勒展开式是怎么得到的,是对于什么展开的呢?我们看: 其中F为所有树组成的函数空间(这里的回归树也就是一个分段函数,不同分段的不同取值就构成了一颗树),与一般机器学习算法不同的是,加法模型不是学习d维空间的权…
机器学习:通俗、有逻辑的说下Xgboost的原理,供讨论参考
——以下是抛砖引玉。 观其大略,而后深入细节,一开始扎进公式反正我是觉得效率不高,还容易打消人的积极性。 决策树是啥? 举个例子,有一堆人,我让你分出男女,你依靠头发长短将人群分为两拨,长发的为“女”,短发为“男”,你是不是依靠一个指标“头发长短”将人群进行了划分,你就形成了一…
利用Python中的numpy包实现PR曲线和ROC曲线的计算
闲来无事,边理解PR曲线和ROC曲线,边写了一下计算两个指标的代码。在python环境下,sklearn里有现成的函数计算ROC曲线坐标点,这里为了深入理解这两个指标,写代码的时候只用到numpy包。事实证明,实践是检验真理的唯一标准,在手写代码的过程中,才能真正体会到这两个评…
GBDT调参指南
GBDT分类器和回归器的大部分参数都是相同的,除了损失函数的选项有些不同,因此下面我们统一说明各个参数的意义以及在什么情境下做什么调整方法。 1.n_estimators:代表弱学习器的最大个数,即最多训练多少棵树。这个值过大导致过拟合,过小导致欠拟合.默认值为100. 2.l…
机器学习:XGBoost公式推导
本人第一次写博客,这是篇算法总结的文章,希望能对大家的学习有所帮助。有什么错误之处,还望留言指出,希望能与大家一起进步。 XGBoost全名叫(eXtreme Gradient Boosting)极端梯度提升,经常被用在一些比赛中,其效果显著。它是大规模并行boosted tr…
当GridSearch遇上XGBoost 一段代码解决调参问题
数据比赛,GBM(Gredient Boosting Machine)少不了,我们最常见的就是XGBoost和LightGBM。 模型是在数据比赛中尤为重要的,但是实际上,在比赛的过程中,大部分朋友在模型上花的时间却是相对较少的,大家都倾向于将宝贵的时间留在特征提取与模型融合这…
为什么XGBoost在机器学习竞赛中表现如此卓越?
tree boosting(树提升)已经在实践中证明可以有效地用于分类和回归任务的预测挖掘。 之前很多年来,人们所选择的树提升算法一直都是 MART(multiple additive regression tree/多重累加回归树)。但从 2015 年开始,一种新的且总是获胜…
LightGBM,XGBoost被面试官刁难了?内有含泪面试经验
LightGBM,XGBoost作为非常经典的GBDT模型,网上原理和实战代码都一大堆。但是看了几个公式,写了几行代码。是不是总觉得心里空空的。直到有一次被面试官问道。给你一堆数据,让你用GBDT模型去处理。这些数据在模型内部是如何运行的呢,最终答案如何得到的呢?虽然现场可以结…