首页
首页
AI Coding
NEW
沸点
课程
直播
活动
AI刷题
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
会员
登录
注册
程序员在深圳
掘友等级
技术专家
|
阿里巴巴
获得徽章 0
动态
文章
专栏
沸点
收藏集
关注
作品
赞
23
文章 22
沸点 1
赞
23
返回
|
搜索文章
最新
热门
【译】BERT Fine-Tuning 指南(with PyTorch)
2018 年是 NLP 突破的一年,迁移学习、特别是 Allen AI 的 ELMO,OpenAI 的 Open-GPT,以及 Google 的 BERT,这些模型让研究者们刷新了多项任务的基线(benchmark),并提供了容易被微调预训练模型(只需很少的数据量和计算量),使…
一文读懂 Word2vec
Word2vec 论文由 Google 的研究团队发布于 2013 年,它的发布,很大程度上改变了 NLP 技术的发展,不仅如此,在使用神经网络来解决各个领域的问题时,谈必离不开 Embedding,而 Embedding 究竟是什么?了解 Word2vec 的同学都知道,它其…
一文读懂神经网络
要说近几年最引人注目的技术,无疑的,非人工智能莫属。无论你是否身处科技互联网行业,随处可见人工智能的身影:从 AlphaGo 击败世界围棋冠军,到无人驾驶概念的兴起,再到科技巨头 All in AI,以及各大高校向社会输送海量的人工智能专业的毕业生。以至于人们开始萌生一个想法:…
用 TensorFlow2.0 实现 Softmax 多分类
我们知道线性回归一般都用来解决回归类问题,例如房价预测,气温预测等。实际上,加上 Softmax 这样的技术,我们还可以使用线性回归来解决多分类问题。Softmax 是对网络结构中输出层的改造,其示意图如下: 接着,把 y1 和 y2 输入到 Softmax 模块中,输出 y1…
使用 TensorFlow2.0 实现线性回归
本文是笔者学习 TensorFlow2.0(下文都写作 TF2.0) 的一篇笔记,使用的教材是《动手深度学习》(TF2.0版)。 上面这个图就是线性回归 的神经网络的表示。 这些也是机器学习理论中的要点,我们可以借本文来回顾一下。 要实现一个算法,我们首先需要用矢量表达式来表示…
决策树之 GBDT 算法 - 分类部分
上一次我们一起学习了 GBDT 算法的回归部分,今天我们继续学习该算法的分类部分。使用 GBDT 来解决分类问题和解决回归问题的本质是一样的,都是通过不断构建决策树的方式,使预测结果一步步的接近目标值。 因为是分类问题,所以分类 GBDT 和回归 GBDT 的 Loss 函数是…
决策树之 GBDT 算法 - 回归部分
GBDT(Gradient Boosting Decision Tree)是被工业界广泛使用的机器学习算法之一,它既可以解决回归问题,又可以应用在分类场景中,该算法由斯坦福统计学教授 Jerome H. Friedman 在 1999 年发表。本文中,我们主要学习 GBDT 的…
深入理解逻辑回归算法(Logistic Regression)
在继续学习 GBDT(Gradient Boosting Dicision Tree) 决策树前,我们需要先来了解下逻辑回归算法(Logistic Regression),因为 GBDT 较为复杂,但在逻辑回归的基础上,理解起来会容易些。 逻辑回归是机器学习中最为基础的算法,也…
决策树算法之 AdaBoost
前一个树桩的错误数据会影响后一个树桩的生成,意味着后面的树桩是前面树桩的补足。这种思想也被称为 Boost,除 AdaBoost 外,GBDT 和 XGBoost 也是这样的思想(很明显它们中都有 Boost)。 则该树桩的总误差(Total Error)即这条错误样本的权重—…
决策树算法之随机森林
在 CART 分类回归树的基础之上,我们可以很容易的掌握随机森林算法,它们之间的区别在于,CART 决策树较容易过拟合,而随机森林可以在一定程度上解决该问题。 随机森林的主要思想是:使用随机性产生出一系列简单的决策树,并组合它们的预测结果为最终的结果,可谓三个臭皮匠赛过一个诸葛…
下一页
个人成就
文章被点赞
1,631
文章被阅读
133,835
掘力值
4,691
关注了
10
关注者
2,565
收藏集
1
关注标签
4
加入于
2016-11-16