「这是我参与2022首次更文挑战的第14天,活动详情查看:2022首次更文挑战」
相关文章:
Android View的绘制流程(一)-绘制流程以及Activity视图介绍
Android View的绘制流程(二)-Activity视图-DecorView
Android View的绘制流程(三)-Activity视图-WindowManager
Android View的绘制流程(四)-Activity视图-ViewRootImpl
Android View的绘制流程(五)-Measure
Android View的绘制流程(六)-Layout
Android View的绘制流程(七)-Draw
前面几篇文章介绍了Activity视图,从创建DecorView到传递给WindowManager再到ViewRootImpl绘制的这个过程的主体源码介绍,整体的绘制流程就是这样,接下来就开始View的绘制了,上一篇结尾已经说了,绘制的过程分为:
- measure: 判断是否需要重新计算 View 的大小,需要的话则计算;
- layout: 判断是否需要重新计算 View 的位置,需要的话则计算;
- draw: 判断是否需要重新绘制 View,需要的话则重绘制。 今天主要介绍测量Mearsure
Measure
在介绍Mearsure之前,先说下 MeasureSpec,MeasureSpec 封装了父布局传递给子布局的布局要求,它通过一个 32 位 int 类型的值来表示,该值包含了两种信息,高两位表示的是 SpecMode(测量模式),低 30 位表示的是 SpecSize(测量的具体大小)。下面看下源码:
/**
* 三种SpecMode:
* 1.UNSPECIFIED
* 父 ViewGroup 没有对子View施加任何约束,子 view 可以是任意大小。这种情况比较少见,主要用于系统内部多次measure的情形,
* 用到的一般都是可以滚动的容器中的子view,比如ListView、GridView、RecyclerView中某些情况下的子view就是这种模式。
* 一般来说,我们不需要关注此模式。
* 2.EXACTLY
* 该 view 必须使用父 ViewGroup 给其指定的尺寸。对应 match_parent 或者具体数值(比如30dp)
* 3.AT_MOST
* 该 View 最大可以取父ViewGroup给其指定的尺寸。对应wrap_content
*
* MeasureSpec使用了二进制去减少对象的分配。
*/
public class MeasureSpec {
// 进位大小为2的30次方(int的大小为32位,所以进位30位就是要使用int的最高位和第二高位也就是32和31位做标志位)
private static final int MODE_SHIFT = 30;
// 运算遮罩,0x3为16进制,10进制为3,二进制为11。3向左进位30,就是11 00000000000(11后跟30个0)
// (遮罩的作用是用1标注需要的值,0标注不要的值。因为1与任何数做与运算都得任何数,0与任何数做与运算都得0)
private static final int MODE_MASK = 0x3 << MODE_SHIFT;
// 0向左进位30,就是00 00000000000(00后跟30个0)
public static final int UNSPECIFIED = 0 << MODE_SHIFT;
// 1向左进位30,就是01 00000000000(01后跟30个0)
public static final int EXACTLY = 1 << MODE_SHIFT;
// 2向左进位30,就是10 00000000000(10后跟30个0)
public static final int AT_MOST = 2 << MODE_SHIFT;
/**
* 根据提供的size和mode得到一个详细的测量结果
*/
// 第一个return:
// measureSpec = size + mode; (注意:二进制的加法,不是十进制的加法!)
// 这里设计的目的就是使用一个32位的二进制数,32和31位代表了mode的值,后30位代表size的值
// 例如size=100(4),mode=AT_MOST,则measureSpec=100+10000...00=10000..00100
//
// 第二个return:
// size &; ~MODE_MASK就是取size 的后30位,mode & MODE_MASK就是取mode的前两位,最后执行或运算,得出来的数字,前面2位包含代表mode,后面30位代表size
public static int makeMeasureSpec(int size, int mode) {
if (sUseBrokenMakeMeasureSpec) {
return size + mode;
} else {
return (size & ~MODE_MASK) | (mode & MODE_MASK);
}
}
/**
* 获得SpecMode
*/
// mode = measureSpec & MODE_MASK;
// MODE_MASK = 11 00000000000(11后跟30个0),原理是用MODE_MASK后30位的0替换掉measureSpec后30位中的1,再保留32和31位的mode值。
// 例如10 00..00100 & 11 00..00(11后跟30个0) = 10 00..00(AT_MOST),这样就得到了mode的值
public static int getMode(int measureSpec) {
return (measureSpec & MODE_MASK);
}
/**
* 获得SpecSize
*/
// size = measureSpec & ~MODE_MASK;
// 原理同上,不过这次是将MODE_MASK取反,也就是变成了00 111111(00后跟30个1),将32,31替换成0也就是去掉mode,保留后30位的size
public static int getSize(int measureSpec) {
return (measureSpec & ~MODE_MASK);
}
}
我们在布局中用到的wrap_content和match_parent,代表的值分别是-2和-1。
既然是测量,那肯定需要知道绘制的View的尺寸大小,也就是开始创建的DecorView的大小,上一篇文章中我们可以看到绘制的方法调用的是performTraversals,看下源码:
//Activity窗口的宽度和高度
int desiredWindowWidth;
int desiredWindowHeight;
...
//用来保存窗口宽度和高度,来自于全局变量mWinFrame,这个mWinFrame保存了窗口最新尺寸
Rect frame = mWinFrame;
//构造方法里mFirst赋值为true,意思是第一次执行遍历吗
if (mFirst) {
//是否需要重绘
mFullRedrawNeeded = true;
//是否需要重新确定Layout
mLayoutRequested = true;
// 这里又包含两种情况:是否包括状态栏
//判断要绘制的窗口是否包含状态栏,有就去掉,然后确定要绘制的Decorview的高度和宽度
if (shouldUseDisplaySize(lp)) {
// NOTE -- system code, won't try to do compat mode.
Point size = new Point();
mDisplay.getRealSize(size);
desiredWindowWidth = size.x;
desiredWindowHeight = size.y;
} else {
//宽度和高度为整个屏幕的值
Configuration config = mContext.getResources().getConfiguration();
desiredWindowWidth = dipToPx(config.screenWidthDp);
desiredWindowHeight = dipToPx(config.screenHeightDp);
}
...
else{
// 这是window的长和宽改变了的情况,需要对改变的进行数据记录
//如果不是第一次进来这个方法,它的当前宽度和高度就从之前的mWinFrame获取
desiredWindowWidth = frame.width();
desiredWindowHeight = frame.height();
/**
* mWidth和mHeight是由WindowManagerService服务计算出的窗口大小,
* 如果这次测量的窗口大小与这两个值不同,说明WMS单方面改变了窗口的尺寸
*/
if (desiredWindowWidth != mWidth || desiredWindowHeight != mHeight) {
if (DEBUG_ORIENTATION) Log.v(mTag, "View " + host + " resized to: " + frame);
//需要进行完整的重绘以适应新的窗口尺寸
mFullRedrawNeeded = true;
//需要对控件树进行重新布局
mLayoutRequested = true;
//window窗口大小改变
windowSizeMayChange = true;
}
}
...
// 进行预测量
if (layoutRequested){
...
if (mFirst) {
// 视图窗口当前是否处于触摸模式。
mAttachInfo.mInTouchMode = !mAddedTouchMode;
//确保这个Window的触摸模式已经被设置
ensureTouchModeLocally(mAddedTouchMode);
} else {
//六个if语句,判断insects值和上一次比有什么变化,不同的话就改变insetsChanged
//insects值包括了一些屏幕需要预留的区域、记录一些被遮挡的区域等信息
if (!mPendingOverscanInsets.equals(mAttachInfo.mOverscanInsets)) {
insetsChanged = true;
}
...
// 这里有一种情况,我们在写dialog时,会手动添加布局,当设定宽高为Wrap_content时,会把屏幕的宽高进行赋值,给出尽量长的宽度
/**
* 如果当前窗口的根布局的width或height被指定为 WRAP_CONTENT 时,
* 比如Dialog,那我们还是给它尽量大的长宽,这里是将屏幕长宽赋值给它
*/
if (lp.width == ViewGroup.LayoutParams.WRAP_CONTENT
|| lp.height == ViewGroup.LayoutParams.WRAP_CONTENT) {
windowSizeMayChange = true;
//判断要绘制的窗口是否包含状态栏,有就去掉,然后确定要绘制的Decorview的高度和宽度
if (shouldUseDisplaySize(lp)) {
// NOTE -- system code, won't try to do compat mode.
Point size = new Point();
mDisplay.getRealSize(size);
desiredWindowWidth = size.x;
desiredWindowHeight = size.y;
} else {
Configuration config = res.getConfiguration();
desiredWindowWidth = dipToPx(config.screenWidthDp);
desiredWindowHeight = dipToPx(config.screenHeightDp);
}
}
}
}
}
上面的代码比较多,主要是2个意思,首先判断是否是第一次测量大小,如果是,判断是否有状态栏,根据状态栏来确定屏幕的高度和显示高度,其次,如果不是第一次,那么从 mWinFrame 获取,并和之前保存的长宽高进行比较,不相等的话就需要重新测量确定高度。
确定了DecorView的尺寸后,就开始调用measureHierarchy来确定MeasureSpec,具体怎么去确定这个MeasureSpec我们不需要太多关心,但是想了解也可以去看下源码,但是MeasureSpec 的计算方法需要知道一下:
private static int getRootMeasureSpec(int windowSize, int rootDimension) {
int measureSpec;
switch (rootDimension) {
case ViewGroup.LayoutParams.MATCH_PARENT:
// Window can't resize. Force root view to be windowSize.
measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.EXACTLY);
break;
case ViewGroup.LayoutParams.WRAP_CONTENT:
// Window can resize. Set max size for root view.
measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.AT_MOST);
break;
default:
// Window wants to be an exact size. Force root view to be that size.
measureSpec = MeasureSpec.makeMeasureSpec(rootDimension, MeasureSpec.EXACTLY);
break;
}
return measureSpec;
}
该方法主要是根据 View 的 MeasureSpec 是根据宽高的参数来划分的。
- MATCH_PARENT :精确模式,大小就是窗口的大小;
- WRAP_CONTENT :最大模式,大小不定,但是不能超过窗口的大小;
- 固定大小:精确模式,大小就是指定的具体宽高,比如100dp。
对于 DecorView 来说就是走第一个 case,到这里 DecorView 的 MeasureSpec 就确定了,从 MeasureSpec 可以得出 DecorView 的宽高的约束信息。DecorView的MeasureSpec确定了,那么接下来开始获取子View的MeasureSpec。
当父 ViewGroup 对子 View 进行测量时,会调用 View 类的measure方法,这是一个 final 方法,无法被重写。ViewGroup 会传入自己的widthMeasureSpec和heightMeasureSpec,分别表示父 View 对子 View 的宽度和高度的一些限制条件。尤其是当 ViewGroup 是 WRAP_CONTENT 的时候,需要优先测量子 View,只有子 View 宽高确定,ViewGroup 才能确定自己到底需要多大的宽高。
当 DecorView 的 MeasureSpec 确定以后,ViewRootImpl 内部会调用 performMeasure 方法:
private void performMeasure(int childWidthMeasureSpec, int childHeightMeasureSpec) {
if (mView == null) {
return;
}
Trace.traceBegin(Trace.TRACE_TAG_VIEW, "measure");
try {
mView.measure(childWidthMeasureSpec, childHeightMeasureSpec);
} finally {
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
}
该方法传入的是对 DecorView 的 MeasureSpec,其中 mView 就是 DecorView 的实例,接下来看 measure() 的具体逻辑:
/**
* 调用这个方法来算出一个View应该为多大。参数为父View对其宽高的约束信息。
* 实际的测量工作在onMeasure()方法中进行
*/
public final void measure(int widthMeasureSpec, int heightMeasureSpec) {
......
// Suppress sign extension for the low bytes
long key = (long) widthMeasureSpec << 32 | (long) heightMeasureSpec & 0xffffffffL;
if (mMeasureCache == null) mMeasureCache = new LongSparseLongArray(2);
// 若mPrivateFlags中包含PFLAG_FORCE_LAYOUT标记,则强制重新布局
// 比如调用View.requestLayout()会在mPrivateFlags中加入此标记
final boolean forceLayout = (mPrivateFlags & PFLAG_FORCE_LAYOUT) == PFLAG_FORCE_LAYOUT;
final boolean specChanged = widthMeasureSpec != mOldWidthMeasureSpec
|| heightMeasureSpec != mOldHeightMeasureSpec;
final boolean isSpecExactly = MeasureSpec.getMode(widthMeasureSpec) == MeasureSpec.EXACTLY
&& MeasureSpec.getMode(heightMeasureSpec) == MeasureSpec.EXACTLY;
final boolean matchesSpecSize = getMeasuredWidth() == MeasureSpec.getSize(widthMeasureSpec)
&& getMeasuredHeight() == MeasureSpec.getSize(heightMeasureSpec);
final boolean needsLayout = specChanged
&& (sAlwaysRemeasureExactly || !isSpecExactly || !matchesSpecSize);
// 需要重新布局
if (forceLayout || needsLayout) {
// first clears the measured dimension flag 标记为未测量状态
mPrivateFlags &= ~PFLAG_MEASURED_DIMENSION_SET;
// 对阿拉伯语、希伯来语等从右到左书写、布局的语言进行特殊处理
resolveRtlPropertiesIfNeeded();
// 先尝试从缓从中获取,若forceLayout为true或是缓存中不存在或是
// 忽略缓存,则调用onMeasure()重新进行测量工作
int cacheIndex = forceLayout ? -1 : mMeasureCache.indexOfKey(key);
if (cacheIndex < 0 || sIgnoreMeasureCache) {
// measure ourselves, this should set the measured dimension flag back
onMeasure(widthMeasureSpec, heightMeasureSpec);
. . .
} else {
// 缓存命中,直接从缓存中取值即可,不必再测量
long value = mMeasureCache.valueAt(cacheIndex);
// Casting a long to int drops the high 32 bits, no mask needed
setMeasuredDimensionRaw((int) (value >> 32), (int) value);
mPrivateFlags3 |= PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
}
// 如果自定义的View重写了onMeasure方法,但是没有调用setMeasuredDimension()方法就会在这里抛出错误;
// flag not set, setMeasuredDimension() was not invoked, we raise
// an exception to warn the developer
if ((mPrivateFlags & PFLAG_MEASURED_DIMENSION_SET) != PFLAG_MEASURED_DIMENSION_SET) {
throw new IllegalStateException("View with id " + getId() + ": "
+ getClass().getName() + "#onMeasure() did not set the"
+ " measured dimension by calling"
+ " setMeasuredDimension()");
}
//到了这里,View已经测量完了并且将测量的结果保存在View的mMeasuredWidth和mMeasuredHeight中,将标志位置为可以layout的状态
mPrivateFlags |= PFLAG_LAYOUT_REQUIRED;
}
mOldWidthMeasureSpec = widthMeasureSpec;
mOldHeightMeasureSpec = heightMeasureSpec;
// 保存到缓存中
mMeasureCache.put(key, ((long) mMeasuredWidth) << 32 |
(long) mMeasuredHeight & 0xffffffffL); // suppress sign extension
}
上面的代码主要就是测量的View的尺寸,通过boolean值去控制是否要测量,需不需要从缓存中读取值,最终调用 onMeasure() 方法去完成实际的测量工作,并且把测量结果值保存到缓存中,通过mPrivateFlags值保存测量状态。
获取子View的MearsureSpec:
public static int getChildMeasureSpec(int spec, int padding, int childDimension) {
// 父 view 的 mode 和 size
int specMode = MeasureSpec.getMode(spec);
int specSize = MeasureSpec.getSize(spec);
// 去掉 padding
int size = Math.max(0, specSize - padding);
int resultSize = 0;
int resultMode = 0;
switch (specMode) {
// Parent has imposed an exact size on us
case MeasureSpec.EXACTLY:
if (childDimension >= 0) {
resultSize = childDimension;
resultMode = MeasureSpec.EXACTLY;
} else if (childDimension == LayoutParams.MATCH_PARENT) {
// Child wants to be our size. So be it.
resultSize = size;
resultMode = MeasureSpec.EXACTLY;
} else if (childDimension == LayoutParams.WRAP_CONTENT) {
// Child wants to determine its own size. It can't be
// bigger than us.
resultSize = size;
resultMode = MeasureSpec.AT_MOST;
}
break;
// Parent has imposed a maximum size on us
case MeasureSpec.AT_MOST:
if (childDimension >= 0) {
// Child wants a specific size... so be it
resultSize = childDimension;
resultMode = MeasureSpec.EXACTLY;
} else if (childDimension == LayoutParams.MATCH_PARENT) {
// Child wants to be our size, but our size is not fixed.
// Constrain child to not be bigger than us.
resultSize = size;
resultMode = MeasureSpec.AT_MOST;
} else if (childDimension == LayoutParams.WRAP_CONTENT) {
// Child wants to determine its own size. It can't be
// bigger than us.
resultSize = size;
resultMode = MeasureSpec.AT_MOST;
}
break;
// Parent asked to see how big we want to be
case MeasureSpec.UNSPECIFIED:
if (childDimension >= 0) {
// Child wants a specific size... let him have it
resultSize = childDimension;
resultMode = MeasureSpec.EXACTLY;
} else if (childDimension == LayoutParams.MATCH_PARENT) {
// Child wants to be our size... find out how big it should
// be
resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
resultMode = MeasureSpec.UNSPECIFIED;
} else if (childDimension == LayoutParams.WRAP_CONTENT) {
// Child wants to determine its own size.... find out how
// big it should be
resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
resultMode = MeasureSpec.UNSPECIFIED;
}
break;
}
//noinspection ResourceType
return MeasureSpec.makeMeasureSpec(resultSize, resultMode);
}
该方法主要是获取子 View 的 MeasureSpec,然后调用 child.measure() 来完成子 View 的测量,从上面代码可以看出子View的MeasureSpec是由其直接父 View 的 MeasureSpec 和 View 自身的属性 LayoutParams (LayoutParams 有宽高尺寸值等信息)共同决定。代码总结出来就是:
当子View的宽高固定,那么View的大小就由LayoutParams 中大小;
当子View的宽高为match,父元素为精度模式(EXACTLY),那么 View 的 MeasureSpec 也是精准模式他的大小不会超过父容器的剩余空间;
当子view为wrap,不管父元素是精准模式还是最大化模式(AT_MOST),View 的 MeasureSpec 总是为最大化模式并且大小不超过父容器的剩余空间。
通过图片表示如下:
View.measure() 代码逻辑前面已经分析过了,最终会调用 onMeasuere 方法,下面看下 View.onMeasuere() 的代码:
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec),
getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec));
}
上面方法中调用了 方法中调用了 setMeasuredDimension()方法,setMeasuredDimension()又调用了 getDefaultSize() 方法。getDefaultSize() 又调用了getSuggestedMinimumWidth()和 getSuggestedMinimumHeight()。
getSuggestedMinimumWidth和getSuggestedMinimumHeight的逻辑是一样的,主要是获取最小宽高。
下面看下 getDefaultSize() 的代码逻辑:
public static int getDefaultSize(int size, int measureSpec) {
int result = size;
int specMode = MeasureSpec.getMode(measureSpec);
int specSize = MeasureSpec.getSize(measureSpec);
switch (specMode) {
case MeasureSpec.UNSPECIFIED:
result = size;
break;
case MeasureSpec.AT_MOST:
case MeasureSpec.EXACTLY:
result = specSize;
break;
}
return result;
}
从源码可以看出来,getDefaultSize中将 wrap_content 跟 match_parent 等同起来,getDefaultSize是View的onMeasure()中默认调用的,也就是说,自定义View设置了wrap和match的效果是一样的,如果自定义View想要实现wrap,那么就需要重写onMeasure,这样说来,是不是很熟悉,在我们开发过程中,最早对ListView做重写,是不是实现了onMeasure方法,解决listView显示不全的问题。
子View绘制完后,还需要计算childState,这个就不多说了,最终是调用resolveSizeAndState()这个方法,源码就不贴了,获取了状态值,就可以拿到View的尺寸了:
// 确定父 View 的宽高
setMeasuredDimension(resolveSizeAndState(maxWidth, widthMeasureSpec, childState),
resolveSizeAndState(maxHeight, heightMeasureSpec,
childState << MEASURED_HEIGHT_STATE_SHIFT));
想了解resolveSizeAndState可以参考网上的介绍,到这里View的测量就算全部介绍完了,下一篇开始介绍View 的 layout 和 draw 过程。