系列文章
- [Vue源码学习] new Vue()
- [Vue源码学习] 配置合并
- [Vue源码学习] $mount挂载
- [Vue源码学习] _render(上)
- [Vue源码学习] _render(下)
- [Vue源码学习] _update(上)
- [Vue源码学习] _update(中)
- [Vue源码学习] _update(下)
- [Vue源码学习] 响应式原理(上)
- [Vue源码学习] 响应式原理(中)
- [Vue源码学习] 响应式原理(下)
- [Vue源码学习] props
- [Vue源码学习] computed
- [Vue源码学习] watch
- [Vue源码学习] 插槽(上)
- [Vue源码学习] 插槽(下)
前言
从之前的章节中,我们知道,Vue在执行渲染的过程中,会进行依赖收集的操作,那么在这一节中,就来看看当数据发生变化时,Vue是如何派发更新的。
派发更新
当数据发生变化时,会触发set访问器,代码如下所示:
/* core/observer/index.js */
export function defineReactive(
obj: Object,
key: string,
val: any,
customSetter?: ?Function,
shallow?: boolean
) {
const dep = new Dep()
// ...
let childOb = !shallow && observe(val)
Object.defineProperty(obj, key, {
enumerable: true,
configurable: true,
get: function reactiveGetter() {
// ...
},
set: function reactiveSetter(newVal) {
const value = getter ? getter.call(obj) : val
/* eslint-disable no-self-compare */
if (newVal === value || (newVal !== newVal && value !== value)) {
return
}
/* eslint-enable no-self-compare */
if (process.env.NODE_ENV !== 'production' && customSetter) {
customSetter()
}
// #7981: for accessor properties without setter
if (getter && !setter) return
if (setter) {
setter.call(obj, newVal)
} else {
val = newVal
}
childOb = !shallow && observe(newVal)
dep.notify()
}
})
}
可以看到,在set访问器中,只有当新旧数据不相同时,才会执行之后的更新逻辑,如果传入的数据还是一个对象,同样也会调用observe方法,将数据转换为响应式对象,最后调用dep.notify方法,进行派发更新的操作,代码如下所示:
/* core/observer/dep.js */
export default class Dep {
notify() {
// stabilize the subscriber list first
const subs = this.subs.slice()
if (process.env.NODE_ENV !== 'production' && !config.async) {
// subs aren't sorted in scheduler if not running async
// we need to sort them now to make sure they fire in correct
// order
subs.sort((a, b) => a.id - b.id)
}
for (let i = 0, l = subs.length; i < l; i++) {
subs[i].update()
}
}
}
还记得在上一小节中,每个目标数据的dep.subs中保存着所有依赖于该目标对象的观察者,所以在notify方法中,遍历这些观察者,同时调用它们的update方法,进行更新操作,代码如下所示:
/* core/observer/watcher.js */
export default class Watcher {
update() {
/* istanbul ignore else */
if (this.lazy) {
this.dirty = true
} else if (this.sync) {
this.run()
} else {
queueWatcher(this)
}
}
}
对于渲染Watcher来说,此时的lazy和sync都为false,所以会继续调用queueWatcher方法,代码如下所示:
/* core/observer/scheduler.js */
export function queueWatcher(watcher: Watcher) {
const id = watcher.id
if (has[id] == null) {
has[id] = true
if (!flushing) {
queue.push(watcher)
} else {
// if already flushing, splice the watcher based on its id
// if already past its id, it will be run next immediately.
let i = queue.length - 1
while (i > index && queue[i].id > watcher.id) {
i--
}
queue.splice(i + 1, 0, watcher)
}
// queue the flush
if (!waiting) {
waiting = true
if (process.env.NODE_ENV !== 'production' && !config.async) {
flushSchedulerQueue()
return
}
nextTick(flushSchedulerQueue)
}
}
}
可以看到,这里的has是用来确保在同一帧中,同一个Watcher实例只添加一次,而queue就是用来保存这些Watcher实例的地方,标志位flushing表示是否已经开始执行Watcher的更新操作,当flushing为false时,直接将Watcher实例添加到queue中,当flushing为true时,需要将Watcher实例添加到queue中特定的位置,标志位waiting表示在新的一轮更新中,将所有的同步更新操作,通过调用nextTick方法,延迟到下一帧中执行,从而避免更新数据时立即做Watcher的更新操作,提高性能。
当同步任务执行完后,此时的queue中保存着所有需要更新的Watcher实例,在下一帧中会调用flushSchedulerQueue方法,代码如下所示:
/* core/observer/scheduler.js */
function flushSchedulerQueue() {
currentFlushTimestamp = getNow()
flushing = true
let watcher, id
// Sort queue before flush.
// This ensures that:
// 1. Components are updated from parent to child. (because parent is always
// created before the child)
// 2. A component's user watchers are run before its render watcher (because
// user watchers are created before the render watcher)
// 3. If a component is destroyed during a parent component's watcher run,
// its watchers can be skipped.
queue.sort((a, b) => a.id - b.id)
// do not cache length because more watchers might be pushed
// as we run existing watchers
for (index = 0; index < queue.length; index++) {
watcher = queue[index]
if (watcher.before) {
watcher.before()
}
id = watcher.id
has[id] = null
watcher.run()
// in dev build, check and stop circular updates.
if (process.env.NODE_ENV !== 'production' && has[id] != null) {
circular[id] = (circular[id] || 0) + 1
if (circular[id] > MAX_UPDATE_COUNT) {
warn(
'You may have an infinite update loop ' + (
watcher.user
? `in watcher with expression "${watcher.expression}"`
: `in a component render function.`
),
watcher.vm
)
break
}
}
}
// keep copies of post queues before resetting state
const activatedQueue = activatedChildren.slice()
const updatedQueue = queue.slice()
resetSchedulerState()
// call component updated and activated hooks
callActivatedHooks(activatedQueue)
callUpdatedHooks(updatedQueue)
// devtool hook
/* istanbul ignore if */
if (devtools && config.devtools) {
devtools.emit('flush')
}
}
可以看到,在flushSchedulerQueue方法中,首先将标志位flushing置为true,表示已经开始执行Watcher的更新,然后对queue中的Watcher实例进行排序,按照创建Watcher的先后顺序,先创建的在前,后创建的在后,然后开始遍历queue中的Watcher列表,如果Watcher的选项中存在before钩子函数,那么在此时会先执行该函数,例如在渲染Watcher中,会执行Vue实例的beforeUpdate钩子函数,代码如下所示:
/* core/instance/lifecycle.js */
export function mountComponent(
vm: Component,
el: ?Element,
hydrating?: boolean
): Component {
// ...
new Watcher(vm, updateComponent, noop, {
before() {
if (vm._isMounted && !vm._isDestroyed) {
callHook(vm, 'beforeUpdate')
}
}
}, true /* isRenderWatcher */)
// ...
}
然后在执行watcher.run方法之前,将此Watcher实例从has中去除,然后就开始执行Watcher的更新操作,run方法的代码如下所示:
/* core/observer/watcher.js */
export default class Watcher {
run() {
if (this.active) {
const value = this.get()
if (
value !== this.value ||
// Deep watchers and watchers on Object/Arrays should fire even
// when the value is the same, because the value may
// have mutated.
isObject(value) ||
this.deep
) {
// set new value
const oldValue = this.value
this.value = value
if (this.user) {
try {
this.cb.call(this.vm, value, oldValue)
} catch (e) {
handleError(e, this.vm, `callback for watcher "${this.expression}"`)
}
} else {
this.cb.call(this.vm, value, oldValue)
}
}
}
}
}
可以看到,在run方法中,Watcher的更新其实还是调用get方法,对于渲染Watcher来说,就是重新执行render和patch操作,由于渲染Watcher调用get方法返回的value总是undefined,所以接下来的逻辑不会执行。
回到flushSchedulerQueue方法中,在执行完watcher.run方法后,在开发模式下会检测是否存在循环更新的操作,当在同一帧中同一个Watcher的更新次数大于MAX_UPDATE_COUNT时,会提示警告。当所有Watcher更新完毕后,Vue会做一些清理工作,将一些数据恢复成初始状态,首先会调用resetSchedulerState方法,代码如下所示:
/* core/observer/scheduler.js */
function resetSchedulerState() {
index = queue.length = activatedChildren.length = 0
has = {}
if (process.env.NODE_ENV !== 'production') {
circular = {}
}
waiting = flushing = false
}
可以看到,在resetSchedulerState方法中,Vue将更新中使用到的数据恢复成初始状态,然后会调用callUpdatedHooks方法,代码如下所示:
/* core/observer/scheduler.js */
function callUpdatedHooks(queue) {
let i = queue.length
while (i--) {
const watcher = queue[i]
const vm = watcher.vm
if (vm._watcher === watcher && vm._isMounted && !vm._isDestroyed) {
callHook(vm, 'updated')
}
}
}
在callUpdatedHooks方法中,Vue会在queue中找到所有渲染Watcher,然后通过这些渲染Watcher找到其对应的Vue实例,然后调用updated钩子函数。
此时,在同一轮事件循环中,所有的Watcher都已经更新完毕,而页面也已经得到了更新。
总结
Vue在修改数据的时候,首先会收集所有待更新的Watcher,然后在下一帧中,使用flushSchedulerQueue方法,同步更新这些Watcher。