首页
AI Coding
NEW
沸点
课程
直播
活动
AI刷题
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
会员
登录
注册
禺垣
掘友等级
获得徽章 0
动态
文章
专栏
沸点
收藏集
关注
作品
赞
31
文章 31
沸点 0
赞
31
返回
|
搜索文章
最新
热门
循环神经网络(RNN)模型
循环神经网络(Recurrent Neural Network, RNN)是一种专门设计用于处理序列数据(如文本、语音、时间序列等)的神经网络模型。其核心思想是通过引入时间上的循环连接,使网络能够保留
卷积神经网络(CNN)模型
卷积神经网络(Convolutional Neural Network, CNN)是一种深度学习模型,广泛应用于图像识别、计算机视觉等领域。其设计理念源于对生物视觉皮层神经机制的模拟,核心原理是通过卷
常见的激活函数汇总
在神经网络中,激活函数(Activation Function)扮演着至关重要的角色,它为神经网络引入非线性因素,使得网络能够学习和模拟复杂的非线性函数关系,从而具备处理各种复杂问题的能力。如果没有激
人工神经网络(ANN)模型
人工神经网络(Artificial Neural Network,ANN),是一种模拟生物神经网络结构和功能的计算模型,它通过大量的神经元相互连接,实现对复杂数据的处理和模式识别。从本质上讲,人工神经
基于主成分分析(PCA)的数据降维
主成分分析(Principal Component Analysis,PCA)是一种用于数据降维的方法,其核心目标是在尽可能保留原始数据信息的前提下,将高维数据映射到低维空间。该算法基于方差最大化理论
LightGBM算法原理及Python实现
LightGBM 由微软公司开发,是基于梯度提升框架的高效机器学习算法,属于集成学习中提升树家族的一员。它以决策树为基学习器,通过迭代地训练一系列决策树,不断纠正前一棵树的预测误差,逐步提升模型的预测
CatBoost算法原理及Python实现
CatBoost 是在传统GBDT基础上改进和优化的一种算法,由俄罗斯 Yandex 公司开发,于2017 年开源,在处理类别型特征和防止过拟合方面有独特优势。
XGBoost算法原理及Python实现
XGBoost 在构建决策树时,利用了二阶导数信息。在损失函数的优化过程中,不仅考虑了一阶导数(梯度),还引入了二阶导数(海森矩阵),这使得算法能够更精确地找到损失函数的最优解,加速模型的收敛速度
AdaBoost算法的原理及Python实现
AdaBoost(Adaptive Boosting,自适应提升)是一种迭代式的集成学习算法,通过不断调整样本权重,提升弱学习器性能,最终集成为一个强学习器。它继承了 Boosting 的基本思想和关
GBDT算法原理及Python实现
GBDT(Gradient Boosting Decision Tree,梯度提升决策树)是集成学习中提升(Boosting)方法的典型代表。它以决策树(通常是 CART 树,即分类回归树)作为弱学习
下一页
个人成就
文章被点赞
34
文章被阅读
2,272
掘力值
481
关注了
0
关注者
2
收藏集
0
关注标签
28
加入于
2025-04-27