首页
AI Coding
NEW
沸点
课程
直播
活动
AI刷题
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
会员
登录
注册
发明者量化交易
掘友等级
发明者量化交易官方微博
获得徽章 0
动态
文章
专栏
沸点
收藏集
关注
作品
赞
0
文章 0
沸点 0
赞
0
返回
|
搜索文章
最新
热门
深度学习目标检测(object detection)系列(六)YOLO2
从上面的图我们可以看到YOLO 2有32层。结构还是比较常规的,主要就是在用33的卷积,22的池化和1*1的卷积。除了上面三个常规操作外,还有reorg和route,其中route在25层和28层,reorg在27层。 route层是合并的意思,比如28层的route把27层和…
集异璧之大成
《集异璧之大成》是在英语世界中有极高评价的科普著作,曾获得普利策文学奖。它通过对哥德尔的数理逻辑,艾舍尔的版画和巴赫的音乐三者的综合阐述,引人入胜地介绍了数理逻辑学、可计算理论、人工智能学、语言学、遗传学、音乐、绘画的理论等方面,构思精巧、含义深刻、视野广阔、富于哲学韵味。
深度学习目标检测(object detection)系列(五) R-FCN
用于图像分类的基础CNN模型,有一个旧形态与新形态的区分,基于旧形态的CNN结构如AlexNet,VGG,Network-in-Network,ZF-Net等等,它们都有一个特点是卷积之后保留了几层用于逻辑判断的全连接网络。何凯明和RBG团队的R-CNN系列在Faster R-…
深度学习目标检测(object detection)系列(四) Faster R-CNN
RBG团队在2015年,与Fast R-CNN同年推出了Faster R-CNN,我们先从头回顾下Object Detection任务中各个网络的发展,首先R-CNN用分类+bounding box解决了目标检测问题,SPP-Net解决了卷积共享计算问题,Fast R-CNN解…
深度学习目标检测(object detection)系列(三) Fast R-CNN
在之前的两个文章中,我们分别介绍了R-CNN与SPP-Net,于是在2015年RBG(Ross B. Girshick)等结合了SPP-Net的共享卷积计算思想,对R-CNN做出改进,于是就有了Fast R-CNN。首先简单介绍下Fast R-CNN。 首先在SPP-Net与R…
深度学习目标检测(object detection)系列(二) SPP-Net
在上一篇R-CNN的文章中,详细介绍了R-CNN算法,同时也说明了R-CNN的致命缺陷,超长的训练时间(84h)和测试时间(47s),造成这个问题的主要原因就是重复性的卷积计算,在R-CNN中,输入到CNN网络中的图片是ss算法提取到的区域,每一张待检测图都会产生1000-20…
深度学习目标检测(object detection)系列(一) R-CNN
R-CNN提出于2014年,应当算是卷积神经网络在目标检测任务中的开山之作了,当然同年间还有一个overfeat算法,在这里暂不讨论。 在之后的几年中,目标检测任务的CNN模型也越来越多,实时性与准确率也越来越好,但是最为经典的模型还是很值得学习的。 对于R-CNN模型,个人是…
机器学习入门概览
我们从一个实例来了解机器学习的基本概念。假设我们现在面临这样一个任务(Task) ,任务的内容是识别手写体的数字。对于计算机而言,这些手写数字是一张张图片,如下所示: 对人来说,识别这些手写数字是非常简单的,但是对于计算机而言,这种任务很难通过固定的编程来完成,即使我们把我们已…
个人成就
文章被点赞
32
文章被阅读
6,945
掘力值
297
关注了
0
关注者
38
收藏集
0
关注标签
1
加入于
2018-09-13