首页
首页
AI Coding
NEW
沸点
课程
直播
活动
AI刷题
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
会员
登录
注册
pandas
databook
创建于2023-07-03
订阅专栏
关于pandas的基础以及总结pandas使用过程中的一些小技巧
等 12 人订阅
共42篇文章
创建于2023-07-03
订阅专栏
默认顺序
默认顺序
最早发布
最新发布
pandas:时间序列数据的周期转换
时间序列数据是数据分析中经常遇到的类型,为了更多的挖掘出数据内部的信息,我们常常依据原始数据中的时间周期,将其转换成不同跨度的周期,然后再看数据是否会在新的周期上产生新的特性。 下面以模拟的K线数据为
最近常用的几个【行操作】的Pandas函数
最近在做交易数据的统计分析时,多次用到数据行之间的一些操作,对于其中的细节,简单做了个笔记。 1. shfit函数 shift函数在策略回测代码中经常出现,计算交易信号,持仓信号以及资金曲线时都有涉及
借助Numpy,优化Pandas的条件检索代码
Numpy其实是最早的处理数据的Python库,它的核心ndarray对象,是一个高效的n维数组结构。 通过这个库,可以高效的完成向量和矩阵运算,由于其出色的性能,很多其他的数据分析,科学计算或者机器
Pandas:如何让你的代码性能飙升
在数据分析相关的工作中,Pandas无疑是一个强大的工具,它的易用性和灵活性广受青睐。然而,随着数据量的不断增长和计算需求的日益复杂,Pandas代码的性能问题也逐渐浮出水面。如何让Pandas代码运
pandas:如何保存数据比较好?
我们在使用pandas处理完数据之后,最终总是要把数据作为一个文件保存下来,那么,保存数据最常用的文件是什么呢?我想大部分人一定会选择csv或者excel。 刚接触数据分析时,我也是这么选择的,不过,
pandas DataFrame内存优化技巧:让数据处理更高效
Pandas无疑是我们数据分析时一个不可或缺的工具,它以其强大的数据处理能力、灵活的数据结构以及易于上手的API赢得了广大数据分析师和机器学习工程师的喜爱。 然而,随着数据量的不断增长,如何高效、合理
Pandas导出美化技巧,让你的Excel更出众
pandas的DataFrame可以通过设置参数使得在jupyter notebook中显示的更加美观,但是,将DataFrame的数据导出excel时,却只能以默认最朴素的方式将数据写入excel。
pandas plot函数:数据可视化的快捷通道
一般来说,我们先用pandas分析数据,然后用matplotlib之类的可视化库来显示分析结果。而pandas库中有一个强大的工具--plot函数,可以使数据可视化变得简单而高效。 1. plot 函
掌握pandas cut函数,一键实现数据分类
pandas中的cut函数可将一维数据按照给定的区间进行分组,并为每个值分配对应的标签。其主要功能是将连续的数值数据转化为离散的分组数据,方便进行分析和统计。 数据准备 下面的示例中使用的数据采集自王
分组聚合不再难:Pandas groupby使用指南
处理大量数据时,经常需要对数据进行分组和汇总,groupby为我们提供了一种简洁、高效的方式来实现这些操作,从而简化了数据分析的流程。 分组聚合是什么 分组是指根据一个或多个列的值将数据分成多个组,每
别再低效筛选数据了!试试pandas query函数
数据过滤在数据分析过程中具有极其重要的地位,因为在真实世界的数据集中,往往存在重复、缺失或异常的数据。pandas提供的数据过滤功能可以帮助我们轻松地识别和处理这些问题数据,从而确保数据的质量和准确性
借助Rich库实现Pandas DataFrame颜值升级
pandas的DataFrame功能强大自不必说,它可以帮助我们极大的提高统计分析的效率。 不过,使用DataFrame开发我们的分析程序的时候,经常需要打印出DataFrame的内容,以验证和调试数
pandas高效读取大文件的探索之路
使用 pandas 进行数据分析时,第一步就是读取文件。在平时学习和练习的过程中,用到的数据量不会太大,所以读取文件的步骤往往会被我们忽视。 然而,在实际场景中,面对十万,百万级别的数据量是家常便饭,
谁是股市的涨跌王?数据分析来解答
数据分析早已成为投资决策的关键工具,而Python,作为一种功能强大的编程语言,为金融分析提供了无限可能。 之前介绍了一些Python中常用的数据分析库,比如pandas,numpy等等,本文将实战演
pandas基础 之 数据读取
数据读取是第一步,只有成功加载数据之后,后续的操作才有可能。 pandas可以读取和导入各种数据格式的数据,如CSV,Excel,JSON,SQL,HTML等,不需要手动编写复杂的读取代码。 1. 各
pandas基础 之 数据统计
在进行统计分析时,pandas提供了多种工具来帮助我们理解数据。pandas提供了多个聚合函数,其中包括均值、标准差、最大值、最小值等等。此外,pandas还可以进行基于列的统计分析,例如通过grou
pandas基础 之 数据类型
数据类型是计算机编程中将不同类型的数据值分类和定义的方式。 通过数据类型,可以确定数据的存储方式和内存占用量,了解不同类型的数据进行各种运算的能力。 使用pandas进行数据分析时,最常用到的几种类型
pandas基础 之 数据修改
pandas 作为一种常用的数据分析工具,提供了广泛的数据修改方法。 既可以针对行或者列的数据进行修改,也可以对具体单个元素进行修改,还可以基于条件选择要修改的行或者列的数据。 1. 增加数据 1.1
pandas基础 之 数据排序
pandas的数据排序可以帮助我们更好地理解和分析数据。 通过对数据进行排序,我们可以提取出特定的信息,例如最大值、最小值、中位数、众数等等,从而更准确地识别数据的特征和特点。 此外,数据排序还可以帮
pandas基础 之 核心数据结构
pandas中用来承载数据的两个最重要的结构分别是: Series:相当于增强版的一维数组 DataFrame:相当于增强版的二维数组 pandas最大的优势在于处理表格类数据,如果数据维度超过二维,
下一页