首页
AI Coding
NEW
沸点
课程
直播
活动
AI刷题
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
会员
登录
注册
机器学习数据挖掘
汀丶人工智能
创建于2023-03-21
订阅专栏
机器学习数据挖掘
等 5 人订阅
共25篇文章
创建于2023-03-21
订阅专栏
默认顺序
默认顺序
最早发布
最新发布
异常检测:探索数据深层次背后的奥秘《下篇》
异常检测:探索数据深层次背后的奥秘《下篇》 异常检测——高维数据异常检测:孤立森林 在实际场景中,很多数据集都是多维度的。随着维度的增加,数据空间的大小(体积)会以指数级别增长,使数据变得稀疏,这便是
异常检测:探索数据深层次背后的奥秘《中篇》
异常检测:探索数据深层次背后的奥秘《中篇》 1.异常检测——线性相关方法 真实数据集中不同维度的数据通常具有高度的相关性,这是因为不同的属性往往是由相同的基础过程以密切相关的方式产生的。在古典统计
异常检测:探索数据深层次背后的奥秘《上篇》
异常检测:探索数据深层次背后的奥秘《上篇》 1、什么是异常检测 异常检测(Outlier Detection),顾名思义,是识别与正常数据不同的数据,与预期行为差异大的数据。 识别如信用卡欺诈,工业生
电子商务平台市场动向的数据分析平台:阿里商品指数,包括淘宝采购指数,淘宝供应指数,1688供应指数。
电子商务平台市场动向的数据分析平台:阿里商品指数,包括淘宝采购指数,淘宝供应指数,1688供应指数。 1.项目介绍 1、阿里指数 是了解电子商务平台市场动向的数据分析平台,2012年11月26日,阿里
基于新浪微博海量用户行为数据、博文数据数据分析:包括综合指数、移动指数、PC指数三个指数
基于新浪微博海量用户行为数据、博文数据数据分析:包括综合指数、移动指数、PC指数三个指数 项目介绍 微指数是基于海量用户行为数据、博文数据,采用科学计算方法统计得出的反映不同事件领域发展状况的指数产品
金融时间序列预测方法合集:CNN、LSTM、随机森林、ARMA预测股票价格(适用于时序问题)、相似度计算、各类评判指标绘图(数学建模科研适用)
金融时间序列预测方法合集:CNN、LSTM、随机森林、ARMA预测股票价格(适用于时序问题)、相似度计算、各类评判指标绘图(数学建模科研适用) 1.使用CNN模型预测未来一天的股价涨跌-CNN(卷积神
数据挖掘18大算法实现以及其他相关经典DM算法:决策分类,聚类,链接挖掘,关联挖掘,模式挖掘。图算法,搜索算法等
数据挖掘18大算法实现以及其他相关经典DM算法:决策分类,聚类,链接挖掘,关联挖掘,模式挖掘。图算法,搜索算法等 算法码源见文末 1.算法目录 18大DM算法 包名 目录名 算法名 Associati
人工智能创新挑战赛:海洋气象预测Baseline[4]完整版(TensorFlow、torch版本)含数据转化、模型构建、MLP、TCNN+RNN、LSTM模型
人工智能创新挑战赛:海洋气象预测Baseline[4]完整版(TensorFlow、torch版本)含数据转化、模型构建、MLP、TCNN+RNN、LSTM模型训练以及预测 1.赛题简介 项目链接以及
“AI Earth”人工智能创新挑战赛:助力精准气象和海洋预测Baseline[3]:TCNN+RNN模型、SA-ConvLSTM模型
“AI Earth”人工智能创新挑战赛:助力精准气象和海洋预测Baseline[3]:TCNN+RNN模型、SA-ConvLSTM模型 1.气象海洋预测-模型建立之TCNN+RNN 本次任务我们将学习
“AI Earth”人工智能创新挑战赛:助力精准气象和海洋预测Baseline[2]:数据探索性分析(温度风场可视化)、CNN+LSTM模型建模
“AI Earth”人工智能创新挑战赛:助力精准气象和海洋预测Baseline[2]:数据探索性分析(温度风场可视化)、CNN+LSTM模型建模 1.气象海洋预测-数据分析 数据分析是解决一个数据挖掘
1.“AI Earth”人工智能创新挑战赛:助力精准气象和海洋预测Baseline[1]、NetCDF4使用教学、Xarray 使用教学,针对气象领域.nc文件
1.“AI Earth”人工智能创新挑战赛:助力精准气象和海洋预测Baseline[1]、NetCDF4使用教学、Xarray 使用教学,针对气象领域.nc文件读取处理 比赛官网:https://ti
数据挖掘实践(金融风控):金融风控之贷款违约预测挑战赛(下篇)[xgboots/lightgbm/Catboost等模型]--模型融合:stacking、ble
数据挖掘实践(金融风控):金融风控之贷款违约预测挑战赛(下篇)[xgboots/lightgbm/Catboost等模型]--模型融合:stacking、blending 相关文章: 数据挖掘实践(金
数据挖掘实践(金融风控):金融风控之贷款违约预测挑战赛(上篇)[xgboots/lightgbm/Catboost等模型]--模型融合:stacking
数据挖掘实践(金融风控):金融风控之贷款违约预测挑战赛(上篇)[xgboots/lightgbm/Catboost等模型]--模型融合:stacking、blending 1.赛题简介 赛题以金融风控
【机器学习入门与实践】合集入门必看系列,含数据挖掘项目实战
【机器学习入门与实践】合集入门必看系列,含数据挖掘项目实战 项目链接合集(必看) 项目专栏合集https://www.heywhale.com/home/column/64141d6b1c8c8b51
【机器学习入门与实践】数据挖掘-二手车价格交易预测(含EDA探索、特征工程、特征优化、模型融合等)
【机器学习入门与实践】数据挖掘-二手车价格交易预测(含EDA探索、特征工程、特征优化、模型融合等) note:项目链接以及码源见文末 1.赛题简介 了解赛题 赛题概况 数据概况 预测指标 分析赛题 数
B.机器学习实战系列[一]:工业蒸汽量预测(最新版本下篇)含特征优化模型融合等
在进行归回模型训练涉及主流ML模型:决策树、随机森林,lightgbm等;在模型验证方面:讲解了相关评估指标以及交叉验证等;同时用lgb对特征进行优化;最后进行基于stacking方式模型融合。
机器学习实战系列[一]:工业蒸汽量预测(最新版本上篇)含数据探索特征工程等
在工业蒸汽量预测上篇中,主要讲解了数据探索性分析:查看变量间相关性以及找出关键变量;数据特征工程对数据精进:异常值处理、归一化处理以及特征降维;在进行归回模型训练涉及主流ML模型:决策树、随机森林,
机器学习算法(八):基于BP神经网络的乳腺癌的分类预测
本文正在参加 人工智能创作者扶持计划 ” 机器学习算法(八):基于BP神经网络的乳腺癌的分类预测 本项目链接:https://www.heywhale.com/home/column/64141d6b
机器学习系列入门系列[七]:基于英雄联盟数据集的LightGBM的分类预测
LightGBM可以看作是XGBoost的升级豪华版,在获得与XGBoost近似精度的同时,又提供了更快的训练速度与更少的内存消耗。正如其名字中的Light所蕴含的那样,LightGBM在大规模数据集
机器学习算法(六)基于天气数据集的XGBoost分类预测
本文正在参加 人工智能创作者扶持计划 ” 1.机器学习算法(六)基于天气数据集的XGBoost分类预测 本项目链接:https://www.heywhale.com/home/column/64141
下一页