首页
AI Coding
数据标注
NEW
沸点
课程
直播
活动
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
登录
注册
确定删除此收藏集吗
删除后此收藏集将被移除
取消
确定删除
确定删除此文章吗
删除后此文章将被从当前收藏集中移除
取消
确定删除
编辑收藏集
名称:
描述:
0
/100
公开
当其他人关注此收藏集后不可再更改为隐私
隐私
仅自己可见此收藏集
取消
确定
数据挖掘
订阅
Arthur重名了77174
更多收藏集
微信扫码分享
微信
新浪微博
QQ
1篇文章 · 0订阅
机器学习之分类效果评估
对于回归问题,通常有 MSE、MAE、RMSE、R^2 四种方法来评判模型的效果。对于分类问题,最简单的办法是采用准确率来评估模型的效果。比如 sklearn 中对于分类问题默认的 score 都是根据准确率来统计的。 使用准确率来评估理解非常简单,但是对于极度偏斜的数据的预测…