首页
AI Coding
NEW
沸点
课程
直播
活动
AI刷题
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
会员
登录
注册
ZOMI酱
掘友等级
架构师
|
华为
移动视觉/三维视觉/AI框架架构师
获得徽章 0
动态
文章
专栏
沸点
收藏集
关注
作品
赞
46
文章 46
沸点 0
赞
46
返回
|
搜索文章
赞
文章( 46 )
沸点( 0 )
【AI系统】什么是微分
自动微分(Automatic Differentiation,AD)是一种对计算机程序进行高效准确求导的技术,一直被广泛应用于计算流体力学、大气科学、工业设计仿真优化等领域。 近年来,机器学习技术的兴
【AI系统】微分计算模式
上一篇文章简单了解计算机中常用几种微分方式。本文将深入介绍 AI 框架离不开的核心功能:自动微分。 而自动微分则是分为前向微分和后向微分两种实现模式,不同的实现模式有不同的机制和计算逻辑,而无论哪种模
【AI系统】微分实现方式
在上一篇文章了解到了正反向模式只是自动微分的原理模式,在实际代码实现的过程,正方向模式只是提供一个原理性的指导,在真正编码过程会有很多细节需要打开,例如如何解析表达式,如何记录反向求导表达式的操作等等
【AI系统】动手实现自动微分
在这章内容,会介绍是怎么实现自动微分的,因为代码量非常小,也许你也可以写一个玩玩。前面的文章当中,已经把自动微分的原理深入浅出的讲了一下,也引用了非常多的论文。有兴趣的可以顺着综述 A survey
【AI系统】动手实现 PyTorch 微分
这里记录一下使用操作符重载(OO)编程方式的自动微分,其中数学实现模式则是使用反向模式(Reverse Mode),综合起来就叫做反向 OO 实现 AD 啦。 基础知识 下面一起来回顾一下操作符重载和
【AI系统】自动微分的挑战&未来
在前面的文章里面,分别介绍了什么是自动微分、如何实现自动微分,以及更加深入的自动微分的基本数学原理,并贯以具体的代码实现例子来说明业界主流的 AI 框架在自动微分实现方法,希望让你更加好地掌握自动微分
【AI系统】计算图基本介绍
在 AI 框架发展的最近一个阶段,技术上主要以计算图来描述神经网络。前期实践最终催生出了工业级 AI:TensorFlow 和 PyTorch,这一时期同时伴随着如 Chainer、DyNet、CNT
【AI系统】计算图原理
在前面的文章曾经提到过,目前主流的 AI 框架都选择使用计算图来抽象神经网络计算表达,通过通用的数据结构(张量)来理解、表达和执行神经网络模型,通过计算图可以把 AI 系统化的问题形象地表示出来。 本
【AI系统】计算图与自动微分
自动求导应用链式法则求某节点对其他节点的雅可比矩阵,它从结果节点开始,沿着计算路径向前追溯,逐节点计算雅可比。将神经网络和损失函数连接成一个计算图,则它的输入、输出和参数都是节点,可利用自动求导求损失
【AI系统】计算图的调度与执行
在前面的内容介绍过,深度学习的训练过程主要分为以下三个部分:1)前向计算、2)计算损失、3)更新权重参数。在训练神经网络时,前向传播和反向传播相互依赖。对于前向传播,沿着依赖的方向遍历计算图并计算其路
下一页
个人成就
文章被点赞
87
文章被阅读
62,406
掘力值
1,953
关注了
0
关注者
63
收藏集
1
关注标签
4
加入于
2022-01-09