首页
AI Coding
数据标注
NEW
沸点
课程
直播
活动
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
登录
注册
pick1
掘友等级
全干
|
无
获得徽章 0
动态
文章
专栏
沸点
收藏集
关注
作品
赞
712
文章 712
沸点 0
赞
712
返回
|
搜索文章
最新
热门
YOLOv11 改进 - 注意力机制 | IIA信息整合注意力(Information Integration Attention ):精准保留空间位置信息,平
前言 本文提出信息整合注意力(IIA)机制,并将其集成到YOLOv11中用于遥感图像语义分割。传统CNN难捕捉全局信息,Transformer计算复杂,现有基于Mamba的方法未充分考虑局部信息。II
YOLOv11 改进 - 注意力机制 | Mask Attention掩码注意力,可学习掩码矩阵破解低分辨率特征提取难题 | 2025 预印
前言 本文提出了用于低分辨率图像分割的MaskAttn - UNet框架,并将其核心的掩码注意力机制集成到YOLOv11中。传统U - Net类模型难以捕捉全局关联,Transformer类模型计算量
YOLOv11 改进 - C2PSA | C2PSA融合Mask Attention掩码注意力,可学习掩码矩阵破解低分辨率特征提取难题 | 2025 预印
前言 本文提出了用于低分辨率图像分割的MaskAttn - UNet框架,并将其核心的掩码注意力机制集成到YOLOv11中。传统U - Net类模型难以捕捉全局关联,Transformer类模型计算量
YOLOv11 改进 - C2PSA | C2PSA融合DiffAttention差分注意力:轻量级差分计算实现高效特征降噪,提升模型抗干扰能力
本文提出DiffCLIP,将差分注意力机制融入CLIP架构,通过计算互补注意力分布的差值,有效抑制噪声、增强关键特征。该方法在不显著增加计算成本的前提下,显著提升模型在图像-文本理解、零样本分类与检索
YOLOv11改进 - C3k2融合 | C3k2融合CBSA 收缩 - 广播自注意力:轻量级设计实现高效特征压缩,优化处理效率 | NeurIPS 2025
本文提出收缩-广播自注意力(CBSA),通过选取代表性token进行收缩计算并广播结果,实现高效、可解释的线性复杂度注意力机制。其逻辑透明,统一多种注意力形式,并集成至YOLOv11的C3k2模块,在
YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总
必读指南 📖 | YOLOv11改进专栏简介 📌 1. 模型改进无思路?200+实战方法直接落地 针对YOLO模型改进痛点,本专栏整理200+实战验证方法,覆盖卷积层、注意力机制等核心模块。 每种方法
【YOLOv11改进 - 注意力机制】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力
【YOLOv11改进 - 注意力机制】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力
【YOLOv11改进 - 注意力机制】LSKA(Large Separable Kernel Attention):大核分离卷积注意力模块
YOLOv11目标检测创新改进与实战案例专栏 @[TOC] 介绍 摘要 带有大卷积核注意力(LKA)模块的视觉注意网络(VAN)在一系列基于视觉的任务上表现出色,超越了视觉Transformer(Vi
【YOLOv10改进-卷积Conv】动态蛇形卷积(Dynamic Snake Convolution)用于管状结构分割任务
YOLOv10专栏介绍了一种用于精确分割管状结构的新方法DSCNet,它结合了动态蛇形卷积、多视角融合和拓扑连续性约束损失。DSConv创新地聚焦细长局部结构,增强管状特征感知,而多视角融合和TCLo
【YOLOv10改进 -卷积Conv】 AKConv(可改变核卷积):任意数量的参数和任意采样形状的即插即用的卷积
AKConv是一种可改变核卷积,旨在解决传统卷积的局限,包括固定大小的卷积窗口和卷积核尺寸。AKConv提供灵活的卷积核参数和采样形状,适应不同尺度特征。其创新点包括:1)支持任意大小和形状的卷积核;
下一页
个人成就
文章被点赞
1
文章被阅读
5,428
掘力值
308
关注了
1
关注者
0
收藏集
0
关注标签
6
加入于
2021-10-01