5.4 The Fundamental Theorem of Calculus

4 阅读2分钟

从上一节可知,对于一个连续函数在区间[a, b]的平均值,我们有公式:

avg=1baabf(x)dxavg = \frac{1}{b - a}\int_a^b f(x)dx

那么,是否存在一个自变量c[a,b]c \in [a, b],使得f(c) = avg呢?从上式的几何意义上看,感觉很有可能成立。上一节关于定积分的性质中,有最大最小不等性:

fmin(ba)abf(x)dxfmax(ba)f_{min} \cdot (b - a) \leq \int_a^b f(x)dx \leq f_{max}(b - a)

fmin1baabf(x)dxfmaxf_{min} \leq \frac{1}{b - a}\int_a^b f(x)dx \leq f_{max}

这里引用一下中间值定理:

"A function y = f(x) that is continuous on a close interval [a, b] takes on every value between f(a) and f(b). In other words, if y0y_0 is any value between f(a) and f(b), then y0=f(c)y_0 = f(c) for some c in [a, b]".

在这里y0=1baabf(x)dxy_0 = \frac{1}{b - a}\int_a^b f(x)dx,那么就存在一个c[a,b]c \in [a, b],使得:

f(c)=1baabf(x)dxf(c) = \frac{1}{b - a}\int_a^b f(x)dx

这就是定积分的中值定理



如果将求定积分的区间作为自变量,比如区间[a, b],固定从a开始,到x,那么可以构建一个函数:

F(x)=axf(t)dtF(x) = \int_a^x f(t)dt

注意这里的变量x和t有不同的意义。那么F(x)和原函数f(t)有什么关系呢?这里给出结论,即:

ddxF(x)=ddxaxf(t)dt=f(x)\frac{d}{dx}F(x) = \frac{d}{dx}\int_a^x f(t)dt = f(x)

我们知道根据导数的定义:

F(x)=limh0F(x+h)F(x)hF'(x) = \lim_{h \to 0}\frac{F(x + h) - F(x)}{h}

根据函数F的定义,可知:

F(x+h)F(x)=ax+hf(t)dtaxf(t)dt=xx+hf(t)dtF(x + h) - F(x) = \int_a^{x + h}f(t)dt - \int_a^x f(t)dt = \int_x^{x + h}f(t)dt

两边除以h,得到:

F(x+h)F(x)h=1hxx+hf(t)dt\frac{F(x + h) - F(x)}{h} = \frac{1}{h}\int_x^{x + h}f(t)dt

根据不定积分的中值定理,存在一个c[x,x+h]c \in [x, x + h],使得:

f(c)=1x+hxxx+hf(t)dt=1hxx+hf(t)dtf(c) = \frac{1}{x + h - x} \int_x^{x + h} f(t)dt = \frac{1}{h} \int_x^{x + h} f(t)dt

那么:

F(x+h)F(x)h=f(c)limh0F(x+h)F(x)h=limh0f(c)\frac{F(x + h) - F(x)}{h} = f(c) \\ \lim_{h \to 0} \frac{F(x + h) - F(x)}{h} = \lim_{h \to 0} f(c)

h0h \to 0的时候,cxc \to x, 所以:

limh0F(x+h)F(x)h=f(x)\lim_{h \to 0} \frac{F(x + h) - F(x)}{h} = f(x)

也就是:

F(x)=f(x)F'(x) = f(x)

这就是微积分基本定理,引用书本原文:

"If f is continuous on [a, b] then F(x) = \int_a^x f(t)dt is continuous on [a, b] and differentiable on (a, b) and its derivative is f(x);

F(x)=ddxaxf(t)dt=f(x).F'(x) = \frac{d}{dx}\int_a^xf(t)dt = f(x).

"


从这一定理我们可知,如果:

F(x)=f(x)F'(x) = f(x)

那么

axf(t)dt=F(x)\int_a^x f(t)dt = F(x)

我们设G为f的任意一个原函数,那么根据拉格朗日中值定理:

G(x)=F(x)+CG(x) = F(x) + C

其中C为常数。假设定积分区间为[a, b],那么:

G(a)=F(a)+C=aaf(t)dt+C=0+CG(a) = F(a) + C = \int_a^af(t)dt + C = 0 + C
G(b)=F(b)+C=abf(t)dt+CG(b) = F(b) + C = \int_a^bf(t)dt + C

两式相减可得:

G(b)G(a)=abf(t)dt+CC=abf(t)dtG(b) - G(a) = \int_a^bf(t)dt + C - C = \int_a^b f(t)dt

所以得出微积分基本定理的推论

"If f is continuous at every point of [a, b] and F is any antiderivative of f on [a, b], then

abf(x)dx=F(b)F(a)\int_a^bf(x)dx = F(b) - F(a)

"

以上便是本节最重要的内容,它是表明微分和积分关系的重要定理。本节还讨论了面积的求解方法,本质上就一个点,注意图像正负的意义,以及导致的分段求解需求即可。



练习

20(2x+5)dx=[x2+5x]20=0(410)=6\int_{-2}^0(2x + 5)dx = \Big[x^2 + 5x\Big]_{-2}^0 = 0 - (4 -10) = 6

2.
34(5x2)dx=[5xx24]34=(204)(1594)=1334\int_{-3}^4(5 - \frac{x}{2})dx = \Big[5x - \frac{x^2}{4}\Big]_{-3}^4 = (20 - 4) - (-15 - \frac{9}{4}) = \frac{133}{4}

3.
04(3xx34)dx=[3x22x416]04=(2416)0=8\int_0^4(3x - \frac{x^3}{4})dx = \Big[\frac{3x^2}{2} - \frac{x^4}{16}\Big]_0^4 = (24 - 16) - 0 = 8

4.
22(x32x+3)dx=[x44x2+3x]22=(44+6)(446)=12\int_{-2}^2(x^3 - 2x + 3)dx = \Big[\frac{x^4}{4} - x^2 + 3x\Big]_{-2}^2 = (4 - 4 + 6) - (4 - 4 - 6) = 12

...


27.
ddx0xcostdt=ddu0ucostdtddxx=sinx2x3\frac{d}{dx}\int_0^{\sqrt{x}}\cos tdt = \frac{d}{du}\int_0^u \cos tdt \cdot \frac{d}{dx}\sqrt{x} = \sin \sqrt{x} \cdot \frac{2\sqrt{x}}{3}

28.
ddx1sinx3t2dt=ddu1u3t2dtddxsinx=3sin2xcosx\frac{d}{dx}\int_1^{\sin x}3t^2dt = \frac{d}{du}\int_1^u3t^2dt \cdot \frac{d}{dx}\sin x = 3\sin^2 x \cdot -\cos x

29.
ddt0t4udu=ddx0xududdtt4=2t23t55\frac{d}{dt}\int_0^{t^4}\sqrt{u}du = \frac{d}{dx}\int_0^x\sqrt{u}du \cdot \frac{d}{dt}t^4 = \frac{2t^2}{3} \cdot \frac{t^5}{5}

30.
ddθ0tanθsec2ydy=ddu0usec2ydyddθtanθ=sec2(tanθ)sec2θ\frac{d}{d\theta}\int_0^{\tan \theta}\sec^2 y dy = \frac{d}{du}\int_0^u \sec^2 ydy \cdot \frac{d}{d\theta}\tan \theta = \sec^2 (\tan \theta) \cdot \sec^2 \theta