3.8 Linearization and Differentials

26 阅读2分钟

这一节从曲线的线性化近似入手,初步切入微分的概念。

线性化(Linearization)指的是用曲线某点的切线来近似这点附近的值。根据点斜率方程,那么y=f(x)在x=a处切线为:

y=f(a)+f(a)(xa)y = f(a) + f'(a)(x - a)

将其看成线性函数L:

L(x)=f(a)+f(a)(xa)L(x) = f(a) + f'(a)(x - a)

引用定义:

If f is differentiable at x = a, then the approximating function

L(x)=f(a)+f(a)(xa)L(x) = f(a) + f'(a)(x - a)

is the linearization of f at a. The approximation

f(x)L(x)f(x) \approx L(x)

of y by L is the standard linear approximation of f at a. The point x = a is the center of the approximation.


下面结合函数图像进一步讨论函数的线性近似函数(切线)和它本身之间的变化和关系,即当x在a附近变化时两个函数的联系。

3.8-1.png

首先约定dx和dy是切线函数L(x)的在x和y上的变化,而Δx\Delta xΔy\Delta y是原函数f(x)在x和y上的变化,dx=Δxdx = \Delta x。所以我们可得:\

ΔL=dy=L(a+dx)L(a)=f(a)+f(a)(a+dxa)f(a)f(a)(aa)=f(a)dx\begin{aligned} \Delta L &= dy =L(a + dx) - L(a) \\ &= f(a) + f'(a)(a + dx - a) - f(a) - f'(a)(a - a) \\ &= f'(a)dx \end{aligned}

这就是微分的标准形式。注意这里符号dy,dx的意思发生了一些变化,和前面章节的求导符合的意义是不同的,这里dy,dx可以认为是两个变量。它们分别被称为differential dx和differential dy。

在f变化Δx\Delta x后,f函数实际对应的变化是Δy\Delta y,当Δx\Delta x(dx)足够小的时候:

Δydy\Delta y \approx dy

这可能就是“微分”一词的来源吧?


我们评估下Δy\Delta y和dy的误差:

approximation error=Δydy=Δyf(a)Δx=f(a+Δx)f(a)f(a)Δx=(f(a+Δx)f(a)Δxf(a))Δx=εΔx\begin{aligned} approximation \ error &= \Delta y - dy \\ &= \Delta y - f'(a)\Delta x \\ &= f(a + \Delta x) - f(a) - f'(a)\Delta x \\ &= (\frac{f(a + \Delta x) - f(a)}{\Delta x} - f'(a))\Delta x \\ &= \varepsilon \cdot \Delta x \end{aligned}

Δx0\Delta x \to 0时,f(a+Δx)f(a)Δxf(a)\frac{f(a + \Delta x) - f(a)}{\Delta x} \to f'(a),误差趋近于零,即dyΔydy \to \Delta y


真实的y变化量可以表示为:

Δy=dy+εΔx=f(a)Δx+εΔx\Delta y = dy + \varepsilon \Delta x = f'(a)\Delta x + \varepsilon \Delta x

其中,f(a)Δxf'(a)\Delta x为近似变化量,εΔx\varepsilon \Delta x为误差值。


引用一下英文表述:

If y = f(x) is differentiable at x = a and x changes from a to a+Δxa + \Delta x, the change Δy\Delta y in y is given by an equation of the form

Δy=f(a)Δx+εΔx\Delta y = f'(a)\Delta x + \varepsilon \Delta x

in which ε0\varepsilon \to 0 as Δx0\Delta x \to 0.


链式法则的证明

假设有函数y=f(g(x))y = f(g(x))u=g(x)u = g(x),如果g(x)在x0x_0处可微,且f(u)在u0u_0处可微,根据上面的微分方程可知:

Δu=g(x0)Δx+ε1Δx=Δx(g(x0)+ε1)\Delta u = g'(x_0)\Delta x + \varepsilon_1\Delta x = \Delta x(g'(x_0) + \varepsilon_1)
Δy=f(u0)Δu+ε2Δu=Δu(f(u0)+ε2)\Delta y = f'(u_0)\Delta u + \varepsilon_2\Delta u = \Delta u(f'(u_0) + \varepsilon_2)

代入Δu\Delta u到第二个式子,得到:

Δy=Δx(g(x0)+ε1)(f(u0)+ε2)\Delta y = \Delta x(g'(x_0) + \varepsilon_1)(f'(u_0) + \varepsilon_2)
ΔyΔx=f(u0)g(x0)+ε1f(u0)+ε2g(x0)+ε1ε2\frac{\Delta y}{\Delta x} = f'(u_0)g'(x_0) + \varepsilon_1 f'(u_0) + \varepsilon_2 g'(x_0) + \varepsilon_1 \varepsilon_2

Δx0\Delta x \to 0时,ε10\varepsilon_1 \to 0ε20\varepsilon_2 \to 0,得到:

dydxx=x0=limΔx0ΔyΔx=f(u0)g(x0)=f(g(x0))g(x0)\left.\frac{dy}{dx}\right|_{x = x_0} = \lim_{\Delta x \to 0}\frac{\Delta y}{\Delta x} = f'(u_0)g'(x_0) = f'(g(x_0))g'(x_0)

证毕。

嗯,感觉这个证明不太严密的样子。


然后介绍了一些方程或函数变化敏感度的评估和应用

Absolute change: Δf=f(a+dx)f(a)\Delta f = f(a + dx) - f(a) (true), df=f(a)dxdf = f'(a)dx (estimate)

Relative change: Δff(a)\frac{\Delta f}{f(a)} (true), dff(a)\frac{df}{f(a)} (estimate)

Percentage change: Δff(a)×100\frac{\Delta f}{f(a)} \times 100 (true), dff(a)\frac{df}{f(a)} (estimate)


一个应用例子:在一定的压力下,单位时间流过一个管子的液体体积和管子的半径有如下关系

V=kr4V = kr^4

问10%的半径扩张,会使得V增加多少?

dV=dVdrdr=4kr3drdV = \frac{dV}{dr}dr = 4kr^3dr

V的相对变化率为:

dVV=4kr3drkr4=4drr\frac{dV}{V} = \frac{4kr^3dr}{kr^4} = 4\frac{dr}{r}

从上式可知,r的相对变化率和V的关系,即10%的r变化会导致40%的V的变化。



练习

  1. f(x)=x32x+3,a=2f(x) = x^3 - 2x + 3, a = 2

f(a)=7,f(a)=3a22=10f(a) = 7, f'(a) = 3a^2 - 2 = 10

L(x)=f(a)+f(a)(xa)=7+10(x2)=10x13L(x) = f(a) + f'(a)(x - a) = 7 + 10(x - 2) = 10x - 13


  1. f(x)=x2+9,a=4f(x) = \sqrt{x^2 + 9}, a = -4

f(a)=5,f(a)=12a2+91/2=110f(a) = 5, f'(a) = \frac{1}{2}\sqrt{a^2 + 9}^{-1/2} = \frac{1}{10}

L(x)=f(a)+f(a)(xa)=5+110(x+4)=275+x10L(x) = f(a) + f'(a)(x - a) = 5 + \frac{1}{10}(x + 4) = \frac{27}{5} + \frac{x}{10}


  1. f(x)=x+1x,a=1f(x) = x + \frac{1}{x}, a = 1

f(a)=2,f(a)=11a2=0f(a) = 2, f'(a) = 1 - \frac{1}{a^2} = 0

L(x)=f(a)+f(a)(xa)=2L(x) = f(a) + f'(a)(x - a) = 2


  1. f(x)=x3,a=8f(x) = \sqrt[3]{x}, a = -8

f(a)=2,f(a)=13a2/3=112f(a) = -2, f'(a) = \frac{1}{3}a^{-2/3} = \frac{1}{12}

L(x)=f(a)+f(a)(xa)=2+112(x+2)=112x+4L(x) = f(a) + f'(a)(x - a) = -2 + \frac{1}{12}(x + 2) = \frac{1}{12}x + 4


5 - 18 略


  1. y=x33xy = x^3 - 3\sqrt{x}

dy=dydxdx=(3x232x)dxdy =\frac{dy}{dx}dx = (3x^2 - \frac{3}{2\sqrt{x}})dx


  1. y=x1x2y = x\sqrt{1 - x^2}

dy=dydxdx=(12x21x2)dxdy = \frac{dy}{dx}dx = (\frac{1 - 2x^2}{\sqrt{1 - x^2}})dx