3.7 Related Rates

40 阅读2分钟

这一节拓展了另一种求导的问题和方法。在某些情况下,我们知道某一个变量a相对应变量t的变化率,而对于与a变量关联的另一个变量b相对于相同变量t的变化率却不容易获得。那么在这种情况下,如果我们已经知道了两个相关变量a和b的方程,那么可以通过对方程应用链式法则来求得变量b相对于变量t的变化率。

a=f(b), b=g(t)a = f(b), \ b = g(t)

dadt=dadbdbdt\frac{da}{dt} = \frac{da}{db} \cdot \frac{db}{dt}

例子:一个圆柱形的储水箱在向外排水,已知排水的流量为3000L/min-3000L/min,那么液面的下降速度为?我们可以列出圆柱体体积公式:

V=1000πr2hV = 1000\pi r^2 h

对等式两边求导,可得:

dVdt=dVdhdhdt=1000πr2dhdt\frac{dV}{dt} = \frac{dV}{dh}\cdot \frac{dh}{dt} = 1000\pi r^2 \frac{dh}{dt}

代入dV/dtdV/dt,可得:

dhdt=30001000πr2=3πr2\frac{dh}{dt} = \frac{-3000}{1000\pi r^2} = -\frac{3}{\pi r^2}



练习

  1. A=πr2A = \pi r^2
dAdt=dAdrdrdt=2πrdrdt\frac{dA}{dt} = \frac{dA}{dr}\cdot \frac{dr}{dt} = 2\pi r \cdot \frac{dr}{dt}

  1. S=4πr2S = 4\pi r^2
dSdt=dSdrdrdt=8πrdrdt\frac{dS}{dt} = \frac{dS}{dr}\cdot \frac{dr}{dt} = 8\pi r\cdot \frac{dr}{dt}

  1. V=πr2hV = \pi r^2 h

a. dVdt=dVdhdhdt=πr2dhdt\frac{dV}{dt} = \frac{dV}{dh}\cdot \frac{dh}{dt} = \pi r^2 \cdot \frac{dh}{dt}

b. dVdt=dVdrdrdt=2πrhdrdt\frac{dV}{dt} = \frac{dV}{dr}\cdot \frac{dr}{dt} = 2\pi r h \cdot \frac{dr}{dt}

c. dVdt=π(2rdrdth+r2dhdt)=2πrhdrdt+πr2drdt\frac{dV}{dt} = \pi(2r\cdot \frac{dr}{dt}\cdot h + r^2\cdot \frac{dh}{dt}) = 2\pi rh\frac{dr}{dt} + \pi r^2\frac{dr}{dt}


  1. V=(1/3)πr2hV = (1/3)\pi r^2h

a. dVdt=dVdhdhdt=(1/3)πr2dhdt\frac{dV}{dt} = \frac{dV}{dh}\cdot \frac{dh}{dt} = (1/3)\pi r^2\frac{dh}{dt}

b. dVdt=dVdrdrdt=(2/3)πrhdrdt\frac{dV}{dt} = \frac{dV}{dr}\cdot \frac{dr}{dt} = (2/3)\pi rh\frac{dr}{dt}

c. dVdt=(1/3)π(2rdrdth+r2dhdt)=(2/3)πrhdrdt+(1/3)πr2dhdt\frac{dV}{dt} = (1/3)\pi(2r\cdot \frac{dr}{dt}\cdot h + r^2\cdot \frac{dh}{dt}) = (2/3)\pi rh\frac{dr}{dt} + (1/3)\pi r^2\frac{dh}{dt}


  1. V=IRV = IR

a. dVdt=1\frac{dV}{dt} = 1

b. dIdt=1/3\frac{dI}{dt} = 1/3

c. dVdt=RdIdt+IdRdt\frac{dV}{dt} = R\cdot \frac{dI}{dt} + I\cdot \frac{dR}{dt}

d. 当V = 12, I = 2时,R = 6,代入上式得:

dVdt=6dIdt+2dRdt\frac{dV}{dt} = 6\frac{dI}{dt} + 2\frac{dR}{dt}

得到dRdt=1/2\frac{dR}{dt} = -1/2,电阻在减少。


  1. P=RI2P = RI^2

a. dPdt=I2dRdt+2RdIdt\frac{dP}{dt} = I^2\frac{dR}{dt} + 2R\frac{dI}{dt}

b. 0=I2dRdt+2RdIdt0 = I^2\frac{dR}{dt} + 2R\frac{dI}{dt}