3.3 The Derivative as a Rate of Change

49 阅读1分钟

这一节主要介绍导数或微分在现实中的应用,或者反过来说,它们是如何从人们观察现实世界的经历中发展出来的。

首先准确的定义了前面学习到的瞬时速率或瞬时变化率(instantaneous rate of change)。

The instantaneous rate of change of f with respect to x at x0x_0 is the derivative

f(x0)=limxx0f(x0+h)f(x0)hf'(x_0) = \lim_{x \to x_0}\frac{f(x_0 + h) - f(x_0)}{h}

provided the limit exists.


假设物体的位置s(注意是位置,不是移动距离)和时间t直接的函数为:

s=f(t)s = f(t)

物体在时间间隔Δt\Delta t,那么位移(displacement)Δs\Delta s

Δs=f(t+Δt)f(t)\Delta s = f(t + \Delta t) - f(t)

平均速度:

vav=ΔsΔt=f(t+Δt)f(t)Δtv_{av} = \frac{\Delta s}{\Delta t} = \frac{f(t + \Delta t) - f(t)}{\Delta t}

瞬时速度(instantaneous velocity, 通常简称为速度):

v(t)=dsdt=limΔt0f(t+Δt)f(t)Δtv(t) = \frac{ds}{dt} = \lim_{\Delta t \to 0}\frac{f(t + \Delta t) - f(t)}{\Delta t}

Speed(不知如何翻译,在英语里它和速度velocity是不一样的,它并没有方向):

Speed=v(t)=dsdtSpeed = |v(t)| = |\frac{ds}{dt}|

加速度(acceleration):

a(t)=dvdt=d2sdt2a(t) = \frac{dv}{dt} = \frac{d^2s}{dt^2}

Jerk(不知怎么翻译?):

j(t)=dadt=d3sdt3j(t) = \frac{da}{dt} = \frac{d^3s}{dt^3}



在经济学上,成本与产量之间的函数称为cost of production c(x)。

marginal cost of production: c'(x)

marginal revenue of production: r'(x)



练习

  1. s=t23t+2, 0t2s = t^2 - 3t + 2, \ 0 \le t \le 2

Δs=s(t+Δt)s(t)=s(2)s(0)=2\Delta s = s(t + \Delta t) - s(t) = s(2) - s(0) = -2

vav=ΔsΔt=s(t+Δt)s(t)Δt=22=1v_{av} = \frac{\Delta s}{\Delta t} = \frac{s(t + \Delta t) - s(t)}{\Delta t} = \frac{-2}{2} = -1

speed=dsdt=2t3=1speed = |\frac{ds}{dt}| = |2t - 3| = 1

a(t)=dvdt=d2sdt2=2a(t) = \frac{dv}{dt} = \frac{d^2s}{dt^2} = 2

change direction


  1. s=6tt2, 0t6s = 6t - t^2, \ 0 \le t \le 6

Δs=s(t+Δt)s(t)=s(6)s(0)=0\Delta s = s(t + \Delta t) - s(t) = s(6) - s(0) = 0

vav=ΔsΔt=s(t+Δt)s(t)Δt=0/6=0v_{av} = \frac{\Delta s}{\Delta t} = \frac{s(t + \Delta t) - s(t)}{\Delta t} = 0/6 = 0

speed=dsdt=62t=6speed = |\frac{ds}{dt}| = |6 - 2t| = 6

a(t)=dvdt=d2sdt2=2a(t) = \frac{dv}{dt} = \frac{d^2s}{dt^2} = -2

did not change direction


  1. s=t3+3t23t, 0t3s = -t^3 + 3t^2 -3t, \ 0 \le t \le 3

Δs=9\Delta s = -9

vav=3v_{av} = -3

speed=12speed = 12

a(t)=12a(t) = -12

change direction