1.5 Combining Functions; Shifting and Scaling Graphs

37 阅读1分钟

这一节类容主要讲述复合函数的常见形式。

(f+g)(x)=f(x)+g(x)(f + g)(x) = f(x) + g(x)
(fg)(x)=f(x)g(x)(f - g)(x) = f(x) - g(x)
(fg)(x)=f(x)g(x)(fg)(x) = f(x)g(x)
(fg)(x)=f(x)g(x) g(x)0(\frac{f}{g})(x) = \frac{f(x)}{g(x)}\ g(x) \neq 0
(cf)(x)=cf(x)(cf)(x) = cf(x), c is constant\

Composite functions: 复合函数

(fg)(x)=f(g(x))(f \circ g)(x) = f(g(x)), call "f composed with g".

"The domain of fgf \circ g consists of the numbers x in the domain of g for which g(x) lies in the domain of f."\

Vertical shifts: 当k>0k > 0,函数向上平移,当k<0k < 0,函数向下平移

y=f(x)+ky = f(x) + k

Horizontal shifts: 当h>0h > 0,函数向下平移,当h<0h < 0,函数向上平移。这个有点反直觉。

y=f(x+h)y = f(x + h)

Vertical and Horizontal scaling and Reflecting Formulas. For c>1c > 1:

y=cf(x)y = cf(x), 竖直拉伸系数c
y=1cf(x)y = \frac{1}{c}f(x), 竖直压缩系数c
y=f(cx)y = f(cx), 横向压缩系数c
y=f(1cx)y = f(\frac{1}{c}x), 横向拉伸系数c

For c=1c = -1:

y=f(x)y = -f(x), 沿x轴映射
y=f(x)y = f(-x), 沿y轴映射\

下图可以概括函数的各种transformations:

1.5-1.png

Ellipse: 椭圆,它可以通过对圆的方程进行拉伸或压缩得到。

c2x2+y2=r2c^2x^2 + y^2 = r^2

c=1c = 1时,它是圆的方程;
0<c<10 < c < 1时,它被横向拉伸,或者说竖直压缩;
c>1c > 1时,它被横向压缩,或者说竖直拉伸;

将方程两边同时除以r2r^2,得到:

x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, where a=r/c, b=ra = r/c,\ b = r.

更进一步用xhx - h代替x,用yky -k代替y,得到:

(xh)2a2+(yk)2b2=1\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1

这就是标准椭圆方程,(h,k)(h, k)是圆心。