3.4 Derivatives of Trigonometric Functions

222 阅读1分钟

三角函数的导数可以从sin(x)和cos(x)两个函数出发,推导出其它的三角函数的导数。因此这两个函数的导数求法很重要。


ddxsin(x)=cos(x)\frac{d}{dx}sin(x) = cos(x)

证明:

f(x)=limh0f(x+h)f(x)h=limh0sin(x+h)sinxh=limh0(sinxcosh+cosxsinh)sinxh=limh0sinx(cosh1)+cosxsinhh=limh0(sinxcosh1h)+limh0(cosxsinhh)=sinxlimh0cosh1h+cosxlimh0sinhh=sinx0+cosx1=cosx\begin{aligned} f'(x) &= \lim_{h \to 0}\frac{f(x + h) - f(x)}{h} \\ &= \lim_{h \to 0}\frac{\sin(x + h) - \sin x}{h} \\ &= \lim_{h \to 0}\frac{(\sin x \cos h + \cos x \sin h) - \sin x}{h} \\ &= \lim_{h \to 0}\frac{\sin x(\cos h - 1) + \cos x \sin h}{h} \\ &= \lim_{h \to 0}(\sin x \cdot \frac{\cos h - 1}{h}) + \lim_{h \to 0}(\cos x \cdot \frac{\sin h}{h}) \\ &= \sin x \cdot \lim_{h \to 0}\frac{\cos h - 1}{h} + \cos x \cdot \lim_{h \to 0}\frac{\sin h}{h} \\ &= \sin x \cdot 0 + \cos x \cdot 1 \\ &= \cos x \end{aligned}

ddxcos(x)=sin(x)\frac{d}{dx}cos(x) = -sin(x)

证明:

ddx(cosx)=limh0cos(x+h)cosxh=limh0(cosxcoshsinxsinh)cosxh=limh0cosx(cosh1)sinxsinhh=cosxlimh0(cosh1h)sinxlimh0sinhh=cosx0sinx1=sinx\begin{aligned} \frac{d}{dx}(\cos x) &= \lim_{h \to 0}\frac{\cos(x + h) - \cos x}{h} \\ &= \lim_{h \to 0}\frac{(\cos x \cos h - \sin x \sin h) - \cos x}{h} \\ &= \lim_{h \to 0}\frac{\cos x (\cos h - 1) - \sin x \sin h}{h} \\ &= \cos x \cdot \lim_{h \to 0}(\frac{\cos h - 1}{h}) - \sin x \cdot \lim_{h \to 0}\frac{\sin h}{h} \\ &= \cos x \cdot 0 - \sin x \cdot 1 \\ &= -\sin x \end{aligned}

由此,根据tan(x),sec(x),cot(x)和csc(x)的定义,可以推导出他们也是可导的。

ddx(tanx)=sec2x\frac{d}{dx}(\tan x) = \sec^2 x

ddx(secx)=secxtanx\frac{d}{dx}(\sec x) = \sec x \tan x

ddx(cotx)=csc2x\frac{d}{dx}(\cot x) = -\csc^2 x

ddx(cscx)=cscxcotx\frac{d}{dx}(\csc x) = -\csc x \cot x


这些三角函数可导,引出一个推论就是,它们都是连续的。



练习

  1. y=10x+3cosxy = -10x + 3\cos x

dydx=103sinx\frac{dy}{dx} = -10 - 3\sin x


  1. y=3x+5sinxy = \frac{3}{x} + 5\sin x

dydx=32x2+5cosx\frac{dy}{dx} = -\frac{3}{2x^2} + 5\cos x


  1. y=cscx4x+7y = \csc x - 4\sqrt{x} + 7

y=cscxcotx2xy' = -\csc x \cot x -\frac{2}{\sqrt{x}}


  1. y=x2cotx1x2y = x^2\cot x - \frac{1}{x^2}

y=2xcotxx2csc2x+2x3y' = 2x\cot x - x^2\csc^2 x + \frac{2}{x^3}


  1. y=(secx+tanx)(secxtanx)y = (\sec x + \tan x)(\sec x - \tan x)

y=ddx(sec2xtan2x)=2sec2xtanx2tanxsec2x=0y' = \frac{d}{dx}(\sec^2 x - \tan^2 x) = 2\sec^2 x \tan x - 2\tan x \sec^2 x = 0


  1. y=(sinx+cosx)secxy = (\sin x + \cos x)\sec x

y=(cosxsinx)secx+(sinx+cosx)secxtanx=1+tan2xy' = (\cos x - \sin x)\sec x + (\sin x + \cos x)\sec x \tan x = 1 + \tan^2 x


  1. y=cotx1+cotxy = \frac{\cot x}{1 + \cot x}

y=csc2x(1+cotx)+cotxcsc2x(1+cotx)2y' = \frac{-\csc^2 x(1 + \cot x) + \cot x \csc^2 x}{(1 + \cot x)^2}


  1. y=cosx1+sinxy = \frac{\cos x}{1 + \sin x}

y=sinx(1+sinx)cos2x(1+sinx)2=1sinxy' = \frac{-\sin x(1 + \sin x) - \cos^2 x}{(1 + \sin x)^2} = -\frac{1}{\sin x}


  1. y=4cosx+1tanxy = \frac{4}{\cos x} + \frac{1}{\tan x}

y=ddx(4secx+cotx)=4secxtanxcsc2xy' = \frac{d}{dx}(4\sec x + \cot x) = 4\sec x \tan x - \csc^2 x


  1. y=cosxx+xcosxy = \frac{\cos x}{x} + \frac{x}{\cos x}

y=sinxxcosxx2+cosxsinxxcos2x=sinxxcosxx2+1cosxxsinxcos2xy' = \frac{-\sin x \cdot x - \cos x}{x^2} + \frac{\cos x - \sin x \cdot x}{\cos^2 x} = -\frac{\sin x}{x} - \frac{\cos x}{x^2} + \frac{1}{\cos x} - \frac{x\sin x}{\cos^2 x}


  1. y=x2sinx+2xcosx2sinxy = x^2\sin x + 2x\cos x - 2\sin x

y=2xsinx+x2cosx+2cosx2xsinx2cosx=x2cosxy' = 2x\sin x + x^2\cos x + 2\cos x - 2x\sin x - 2\cos x = x^2\cos x


  1. y=x2cosx2xsinx2cosxy = x^2\cos x - 2x\sin x - 2\cos x

y=2xcosxx2sinx2sinx2xcosx+2sinx=x2sinxy' = 2x\cos x - x^2\sin x - 2\sin x - 2x\cos x + 2\sin x = -x^2\sin x


  1. s=tantts = \tan t - t

s=sec2t1s' = \sec^2 t - 1


  1. s=t2sect+1s = t^2 - \sec t + 1

s=2tsecttants' = 2t - \sec t \tan t


  1. s=1+csct1cscts = \frac{1 + \csc t}{ 1 - \csc t}

s=csctcott+csctcott(1+csct)2=0s' = \frac{-\csc t \cot t + \csc t \cot t}{(1 + \csc t)^2} = 0


  1. s=sint1costs = \frac{\sin t}{1 - \cos t}

s=cost(1cost)sin2t(1cost)2=11costs' = \frac{\cos t(1 - \cos t) - \sin^2 t}{(1 - \cos t)^2} = -\frac{1}{1 - \cos t}