3.5 The Chain Rule and Parametric Equations

112 阅读2分钟

链式法则是一种求导的重要方法,需要掌握牢固。

链式法则是一种对组合函数求导的方式,但是通常对于一般的函数,也可以把它转换为组合函数的形式来进行求导。它的具体定义:

If f(u) is differentiable at the point u = g(x) and g(x) is differentiable at x, then the composite function (fg)(x)=f(g(x))(f \circ g)(x) = f(g(x)) is differentiable at x, and

(fg)(x)=f(g(x))g(x)(f \circ g)'(x) = f'(g(x))\cdot g'(x)

In Leibniz's notation, if y = f(u) and u = g(x), then

dydx=dydududx\frac{dy}{dx} = \frac{dy}{du}\cdot \frac{du}{dx}

注意法则的前提,是f(u)和g(x)均为可微的。


例子:求x(t)=cos(t2+1)x(t) = cos(t^2 + 1)t0t \geq 0时的速度。

u=t2+1u = t^2 + 1,那么x(t)可转换为t(u) = cos(u),应用链式法则:

dxdt=dxdududt=sin(u)2t=sin(t2+1)2t=2tsin(t2+1)\begin{aligned} \frac{dx}{dt} &= \frac{dx}{du}\cdot \frac{du}{dt} \\ &= -\sin(u)\cdot 2t \\ &= -\sin(t^2 + 1)\cdot 2t \\ &= -2t\sin(t^2 + 1) \end{aligned}

更进一步的,链式法则可以多次使用,比如:

g(t)=tan(5sin2t)g(t) = tan(5 - \sin 2t)

可以先设u=5sin2tu = 5 - \sin 2t,然后对于u中的sin2t\sin 2t,可以设u=2tu = 2t再次应用链式法则。

链式法则也可以应用于指数函数上,称为(Power chain rule),比如:

ddx(5x3x4)7=7(5x3x4)6ddx(5x3x4)\frac{d}{dx}(5x^3 - x^4)^7 = 7(5x^3 - x^4)^6\frac{d}{dx}(5x^3 - x^4)



参数方程(parametric equations)是另一种表述数量关系的方式,比如知道x和y分别与另一个变量t的关系,但是还不清楚x与y之间的关系,那么就有函数:

x=f(t),y=g(t)x = f(t), y = g(t)

这称为参数方程。如果我们知道f和g在t处可微,也知道y在x处可微,那么三者之间的关系为:

dydt=dydxdxdt\frac{dy}{dt} = \frac{dy}{dx}\cdot \frac{dx}{dt}

或者说:

dydx=dy/dtdx/dt\frac{dy}{dx} = \frac{dy/dt}{dx/dt}

这个定理的好处在于,我们不需要知道y=f(x),就可以求得dy/dxdy/dx,这在解决某些问题上很有用。

更近一步的,二阶微分函数可以通过如下定理求得:

d2ydx2=dy/dtdx/dt\frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt}

注意这里:

y=dydxy' = \frac{dy}{dx}

例子:求x=tt2,y=tt3x = t - t^2, y = t - t^3的二阶微分函数

y=dydx=dy/dtdx/dt=13t212ty' = \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{1 - 3t^2}{1 - 2t}

dydt=ddt(13t212t)=26t+6t2(12t)2\frac{dy'}{dt} = \frac{d}{dt}(\frac{1 - 3t^2}{1 - 2t}) = \frac{2 - 6t + 6t^2}{(1 - 2t)^2}

d2ydx2=dy/dtdx/dt=(26t+6t2)/(12t)212t=26t+6t2(12t)3\frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt} = \frac{(2 - 6t + 6t^2)/(1 - 2t)^2}{1 - 2t} = \frac{2 - 6t + 6t^2}{(1 - 2t)^3}



练习

  1. y=6u9,u=(1/2)x4y = 6u - 9, u = (1/2)x^4

dydx=dydududx=62x3=12x3\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 6 \cdot 2x^3 = 12x^3


  1. y=2u3,u=8x1y = 2u^3, u = 8x - 1

dydx=dydududx=6u28=48(8x1)2\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 6u^2 \cdot 8 = 48(8x - 1)^2


  1. y=sinu,u=3x+1y = \sin u, u = 3x + 1

dydx=dydududx=cosu3=3cos(3x+1)\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \cos u \cdot 3 = 3\cos(3x + 1)


  1. y=cosu,u=x/3y = \cos u, u = -x/3

dydx=dydududx=sinu13=13sin(x3)\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -\sin u \cdot -\frac{1}{3} = \frac{1}{3}\sin(-\frac{x}{3})


  1. y=cosu,u=sinxy = \cos u, u = \sin x

dydx=dydududx=sinucosx=sin(sinx)cosx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -\sin u \cdot \cos x = -\sin(\sin x)\cdot \cos x


  1. y=sinu,u=xcosxy = \sin u, u = x - \cos x

dydx=cosu(1+sinx)=cos(xcosx)(1+sinx)\frac{dy}{dx} = \cos u \cdot (1 + \sin x) = \cos (x - \cos x) \cdot (1 + \sin x)


  1. y=tanu,u=10x5y = \tan u, u = 10x - 5

dydx=sec2u10=10sec2(10x5)\frac{dy}{dx} = \sec^2u \cdot 10 = 10\sec^2(10x - 5)


  1. y=secu,u=x2+7xy = -\sec u, u = x^2 + 7x

dydx=secutanu(2x+7)=sec(x2+7x)tan(x2+7x)(2x+7)\frac{dy}{dx} = -\sec u \tan u \cdot (2x + 7) = -\sec(x^2 + 7x)\tan(x^2 + 7x)\cdot (2x + 7)


  1. y=(2x+1)5y = (2x + 1)^5

y=5(2x+1)42=10(2x+1)4y' = 5(2x + 1)^4 \cdot 2 = 10(2x + 1)^4


  1. y=(43x)9y = (4 - 3x)^9

y=27(43x)8y' = -27(4 - 3x)^8


  1. y=(1x7)7y = (1 - \frac{x}{7})^{-7}

y=7(1x7)817=x7)8y' = -7(1 - \frac{x}{7})^{-8}\cdot -\frac{1}{7} = \frac{x}{7})^{-8}


  1. y=(x21)10y = (\frac{x}{2} - 1)^{-10}

y=10(x21)1112=5(x21)11y' = -10(\frac{x}{2} - 1)^{-11}\cdot \frac{1}{2} = -5(\frac{x}{2} - 1)^{-11}


  1. y=(x28+x1x)4y = (\frac{x^2}{8} + x - \frac{1}{x})^4

y=4(x28+x1x)3(4x+1+1x2)y' = 4(\frac{x^2}{8} + x - \frac{1}{x})^3 \cdot (4x + 1 + \frac{1}{x^2})


  1. y=(x5+15x)5y = (\frac{x}{5} + \frac{1}{5x})^5

y=5(x5+15x)4(1515x2)y' = 5(\frac{x}{5} + \frac{1}{5x})^4 \cdot (\frac{1}{5} - \frac{1}{5x^2})


  1. y=sec(tanx)y = \sec(\tan x)

y=sec(tanx)tan(tanx)sec2xy' = \sec(\tan x)\tan(\tan x) \cdot \sec^2 x


  1. y=cot(π1x)y = \cot (\pi - \frac{1}{x})

y=csc2(π1x)1x2y' = -\csc^2(\pi - \frac{1}{x})\cdot \frac{1}{x^2}


  1. y=sin3xy = \sin^3 x

y=3sin2xcosxy' = 3\sin^2 x \cdot \cos x


  1. y=5cos4xy = 5\cos^{-4}x

y=20cos5xsinx=20cos5xsinxy' = -20\cos^{-5}x \cdot -\sin x = 20\cos^{-5}x\cdot \sin x


  1. p=3tp = \sqrt{3 - t}

p=123tp' = -\frac{1}{2\sqrt{3 - t}}


  1. q=2rr2q = \sqrt{2r - r^2}

q=122rr2(22r)q' = \frac{1}{2\sqrt{2r - r^2}} \cdot (2 - 2r)


  1. s=43πsin3t+45πcos5ts = \frac{4}{3\pi}\sin 3t + \frac{4}{5\pi}\cos 5t

s=4πcos3t4πsin5ts' = \frac{4}{\pi}\cos 3t - \frac{4}{\pi}\sin 5t


  1. s=sin(3πt2)+cos(3πt2)s = \sin(\frac{3\pi t}{2}) + \cos(\frac{3\pi t}{2})

s=3π2cos(3πt2)3π2sin(3πt2)s' = \frac{3\pi}{2}\cos(\frac{3\pi t}{2}) - \frac{3\pi}{2}\sin(\frac{3\pi t}{2})


23 - 66 略


  1. x=cos2t,y=sin2t,0tπx = \cos 2t, y = \sin 2t, 0 \leq t \leq \pi
x2+y2=cos22t+sin22t=1,and02t2πx2+y2=1,is a full circle.\because x^2 + y^2 = \cos^2 2t + \sin^2 2t = 1, \text{and}\\ 0 \leq 2t \leq 2\pi \\ \therefore x^2 + y^2 = 1, \text{is a full circle.}

质点从(1, 0)处开始,逆时针绕圆一周。


  1. x=cos(πt),y=sin(π1),0tπx = \cos(\pi - t), y = \sin(\pi - 1), 0 \leq t \leq \pi

x2+y2=1x^2 + y^2 = 1

质点从(-1, 0)处开始,顺时针绕圆半圈。


  1. x=4cost,y=2sint,0t2πx = 4\cos t, y = 2\sin t, 0 \leq t \leq 2\pi

(x2)2+y2=4cos2t+4sin2t=4(\frac{x}{2})^2 + y^2 = 4\cos^2 t + 4\sin^2 t = 4

是一个在x轴方向被拉伸的椭圆,质点从(4, 0)处开始,逆时针绕成一个椭圆。


  1. x=4sint,y=5cost,0t2πx = 4\sin t, y = 5\cos t, 0 \leq t \leq 2\pi

(x4)2+(y5)2=1(\frac{x}{4})^2 +(\frac{y}{5})^2 = 1

质点从(0, 5)开始,顺时针旋转一周。


  1. x=3t,y=9t2,<t<+x = 3t, y = 9t^2, -\infty < t < +\infty

y=9(x3)2=x2y = 9(\frac{x}{3})^2 = x^2


  1. x=t,y=t,t0x = -\sqrt{t}, y = t, t \geq 0

y=x2,x0y = x^2, x \leq 0


  1. x=2t5,y=4t7,<t<+x = 2t - 5, y = 4t - 7, -\infty < t < +\infty

y2x=3,y=2x+3y - 2x = 3, y = 2x + 3


  1. x=33t,y=2t,0t1x = 3 - 3t, y = 2t, 0 \leq t \leq 1

y=223xy = 2 - \frac{2}{3}x


75 - 86 略


  1. x=2cost,y=2sint,t=π/4x = 2\cos t, y = 2\sin t, t = \pi/4
dydx=dy/dtdx/dt=2cost2sint\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2\cos t}{-2\sin t}

代入t=π/4t = \pi/4,得到斜率为-1,此处的坐标为(2,2)(\sqrt{2}, \sqrt{2}),根据斜率定义:

1=y2x2y=22x-1 = \frac{y - \sqrt{2}}{x - \sqrt{2}} \\ y = 2\sqrt{2} - x
d2ydx2=dy/dtdx/dt=1/sin2t2sint=2sin3t\frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt} = \frac{1/\sin^2 t}{-2\sin t} = -\frac{2}{\sin^3 t}

  1. x=cost,y=3cost,t=2π/3x = \cos t, y = \sqrt{3}\cos t, t = 2\pi/3
dydx=dy/dtdx/dt=3sintsint=3\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{-\sqrt{3}\sin t}{-\sin t} = \sqrt{3}

斜率为3\sqrt{3}t=2π/3t = 2\pi/3此处的坐标为(1/2,3/2)(-1/2, -\sqrt{3}/2),根据斜率定义:

3=y+3/2x+1/2y=3x\sqrt{3} = \frac{y + \sqrt{3}/2}{x + 1/2} \\ y = \sqrt{3}x
d2ydx2=dy/dtdx/dt=0\frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt} = 0

  1. x=t,y=t,t=1/4x = t, y = \sqrt{t}, t = 1/4
dydx=dy/dtdx/dt=12t1=12t\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\frac{1}{2\sqrt{t}}}{1} = \frac{1}{2\sqrt{t}}

代入t=1/4t = 1/4,得到斜率为1,此处的坐标为(1/4,1/2)(1/4, 1/2),根据斜率定义:

14=y1/2x1/4y=14x716\frac{1}{4} = \frac{y - 1/2}{x - 1/4} \\ y = \frac{1}{4}x - \frac{7}{16}
d2ydx2=dy/dtdx/dt=14x32\frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt} = -\frac{1}{4}x^{-\frac{3}{2}}

  1. x=t+1,y=3t,t=3x = -\sqrt{t + 1}, y = \sqrt{3t}, t = 3
dydx=dy/dtdx/dt=12(3t)1/212(t+1)1/2=(3tt+1)1/2\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\frac{1}{2}(3t)^{-1/2}}{-\frac{1}{2}(t + 1)^{-1/2}} = -(\frac{3t}{t + 1})^{-1/2}
d2ydx2=dy/dtdx/dt=12(3tt+1)3/212(t+1)1/2=(3tt+1)3/2(t+1)1/2\frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt} = \frac{\frac{1}{2}(\frac{3t}{t + 1})^{-3/2}}{-\frac{1}{2}(t + 1)^{-1/2}} = -\frac{(\frac{3t}{t + 1})^{-3/2}}{(t + 1)^{-1/2}}

  1. x=2t2+3,y=t4,t=1x = 2t^2 + 3, y = t^4, t = -1
dydx=dy/dtdx/dt=2t33t=23t2\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2t^3}{3t} = \frac{2}{3}t^2
d2ydx2=dy/dtdx/dt=4/3t4t=1/3\frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt} = \frac{4/3t}{4t} = 1/3

  1. x=tsinx,y=1cost,t=π/3x = t - \sin x, y = 1 - \cos t, t = \pi/3
dydx=dy/dtdx/dt=sintcost\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = -\frac{\sin t}{\cos t}
d2ydx2=dy/dtdx/dt=cos2t+sin2tcos2tcost=1cos3t\frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt} = \frac{-\frac{\cos^2 t + \sin^2 t}{\cos^2 t}}{-\cos t} = \frac{1}{\cos^3 t}

  1. x=cost,y=1+sint,t=π/2x = \cos t, y = 1 + \sin t, t = \pi/2
dydx=dy/dtdx/dt=costsint\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\cos t}{-\sin t}
d2ydx2=dy/dtdx/dt=1sin3t\frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt} = \frac{1}{\sin^3 t}

  1. x=sec21,y=tant,t=π/4x = \sec^2 - 1, y = \tan t, t = -\pi/4
dydx=dy/dtdx/dt=sec2t2sec2ttant=12tant\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\sec^2 t}{2\sec^2 t\tan t} = \frac{1}{2\tan t}
d2ydx2=dy/dtdx/dt=12tan2tsec2t2sec2ttant=14tan3t\frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt} = \frac{-\frac{1}{2}\tan^{-2}t\sec^2 t}{2\sec^2 t\tan t} = \frac{1}{4\tan^3 t}