3.2 Differentiation Rules

32 阅读4分钟

这一节介绍最常用的求微分定理,十分重要。证明就不证了,死记硬背也要记住这些定理。


Rule 1, Derivative of a constant function

If f has constant value f(x) = c, then

dfdx=ddx(c)=0\frac{df}{dx} = \frac{d}{dx}(c) = 0


Rule 2, Power rule for integers

if n is a positive integer, then

ddxxn=nxn1\frac{d}{dx}x^n = nx^{n - 1}

if n is a negative integer and x0x \neq 0, then

ddxxn=nxn1\frac{d}{dx}x^n = nx^{n - 1}


Rule 3, Constant Multiple Rule

If u is a differentiable function of x, and c is a constant, then

ddx(cu)=cdudx\frac{d}{dx}(cu) = c\frac{du}{dx}


Rule 4, Dirivative of sum rule

If u and v are differentiable function of x, then their sum u + v is differentiable at every point where u and v are both differentiable. At such points,

ddx(u+v)=dudx+dvdx\frac{d}{dx}(u + v) = \frac{du}{dx} + \frac{dv}{dx}

Rule 4可以拓展到n个函数相加的情况,只要他们都是可微的。


Rule 5, Derivative product rule

If u and v are differentiable at x, then so is their product uv, and

ddx(uv)=udvdx+vdudx\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}


Rule 6, Derivative quotient rule

If u an v are differentiable at x and if v(x)0v(x) \neq 0, then the quotient u/v is differentiable at x, and

ddx(uv)=vdudxudvdxv2\frac{d}{dx}(\frac{u}{v}) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}



Second and higher-order derivatives

二阶至高阶导数,顾名思义,这里主要搞清楚约定的符号和英语里面对高阶导数的表达方式:

f(x)=d2ydx2=ddx(dydx)=dydx=y=D2(f)(x)=Dx2f(x)f''(x) = \frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx}) = \frac{dy'}{dx} = y'' = D^2(f)(x) = D_x^2f(x)

yy' - y prime
yy'' - y double prime
d2ydx2\frac{d^2y}{dx^2} - d squared y dx squared yy''' - y triple prime
y(n)y^{(n)} - y super n
dnydxn\frac{d^ny}{dx^n} - d to the n of y by dx to the n
DnD^n - D to the n



练习

  1. y=x2+3y = -x^2 + 3

ddx(x2+3)=2x\frac{d}{dx}(-x^2 + 3) = -2x

ddx(2x)=2\frac{d}{dx}(-2x) = -2


  1. y=x2+x+8y = x^2 + x + 8

y=2x+1y' = 2x + 1

y=2y'' = 2


  1. s=5t33t5s = 5t^3 - 3t^5

s=15t215t4s' = 15t^2 -15t^4

s=30t60t3s'' = 30t - 60t^3


  1. w=3z77z3+21z2w = 3z^7 - 7z^3 + 21z^2

w=21z621z2+42zw' = 21z^6 - 21z^2 + 42z

w=126z542z+42w'' = 126z^5 - 42z + 42


  1. y=4x33xy = \frac{4x^3}{3} - x

y=4x21y' = 4x^2 - 1

y=8xy'' = 8x


  1. y=x33+x22+x4y = \frac{x^3}{3} + \frac{x^2}{2} + \frac{x}{4}

y=x2+x+14y' = x^2 + x + \frac{1}{4}

y=2x+1y'' = 2x + 1


  1. w=3z21zw = 3z^{-2} - \frac{1}{z}

w=6z3+1z2w' = -6z^{-3} + \frac{1}{z^2}

w=18z42z3w'' = 18z^{-4} - \frac{2}{z^3}


  1. s=2t1+4t2s = -2t^{-1} + \frac{4}{t^2}

s=2t28t3s' = 2t^{-2} - \frac{8}{t^3}

s=4t3+24t4s'' = -4t^{-3} + \frac{24}{t^4}


  1. y=6x210x5x2y = 6x^2 - 10x - 5x^{-2}

y=12x10+10x3y' = 12x - 10 + 10x^{-3}

y=1230x4y'' = 12 - 30x^{-4}


  1. y=42xx3y = 4 - 2x - x^{-3}

y=2+3x4y' = -2 + 3x^{-4}

y=12x5y'' = -12x^{-5}


  1. r=13s252sr = \frac{1}{3s^2} - \frac{5}{2s}

r=23s3+52s2r' = -\frac{2}{3s^3} + \frac{5}{2s^2}

r=2s45s3r'' = \frac{2}{s^4} - \frac{5}{s^3}


  1. r=12ϕ4ϕ3+1ϕ4r = \frac{12}{\phi} - \frac{4}{\phi^3} + \frac{1}{\phi^4}

r=12ϕ2+12ϕ44ϕ5r' = -\frac{12}{\phi^2} + \frac{12}{\phi^4} - \frac{4}{\phi^5}

r=24ϕ348ϕ5+20ϕ6r'' = \frac{24}{\phi^3} - \frac{48}{\phi^5} + \frac{20}{\phi^6}


  1. y=(3x2)(x3x+1)y = (3 - x^2)(x^3 - x + 1)

y=2x(x3x+1)+(3x2)(3x21)=5x4+12x22x3y' = -2x(x^3 - x + 1) + (3 - x^2)(3x^2 -1) = -5x^4 + 12x^2 -2x -3

y=ddx(x5+4x3x23x+3)=5x4+12x22x3y' = \frac{d}{dx}(-x^5 + 4x^3 -x^2 -3x + 3) = -5x^4 + 12x^2 -2x -3


  1. y=(x1)(x2+x+1)y = (x - 1)(x^2 + x + 1)

y=x2+x+1+(x1)(2x+1)=3x2y' = x^2 + x + 1 + (x - 1)(2x + 1) = 3x^2

y=ddx(x3+x2+xx2x1)=3x2y' = \frac{d}{dx}(x^3 + x^2 + x - x^2 - x - 1) = 3x^2


  1. y=(x2+1)(x+5+1x)y = (x^2 + 1)(x + 5 + \frac{1}{x})

y=2x(x+5+1x)+(x2+1)(11x2)=3x2+10x+21x2y' = 2x(x + 5 + \frac{1}{x}) + (x^2 + 1)(1 - \frac{1}{x^2}) = 3x^2 + 10x + 2 - \frac{1}{x^2}

y=ddx(x3+5x2+x+x+5+1x)=3x2+10x+21x2y' = \frac{d}{dx}(x^3 + 5x^2 + x + x + 5 + \frac{1}{x}) = 3x^2 + 10x + 2 - \frac{1}{x^2}


  1. y=(x+1x)(x1x+1)y = (x + \frac{1}{x})(x - \frac{1}{x} + 1)

y=(11x2)(x1x+1)+(x+1x)(1+1x2)=2x1x2+2x3+1y' = (1 - \frac{1}{x^2})(x - \frac{1}{x} + 1) + (x + \frac{1}{x})(1 + \frac{1}{x^2}) = 2x - \frac{1}{x^2} + \frac{2}{x^3} + 1

y=ddx(x21+x+11x2+1x)=2x+1+2x31x2y' = \frac{d}{dx}(x^2 - 1 + x + 1 - \frac{1}{x^2} + \frac{1}{x}) = 2x + 1 + \frac{2}{x^3} - \frac{1}{x^2}


  1. y=2x+53x2y = \frac{2x + 5}{3x - 2}

y=2(3x2)3(2x+5))(3x2)2=199x212x+4y' = \frac{2(3x - 2) - 3(2x + 5))}{(3x - 2)^2} = \frac{-19}{9x^2 - 12x + 4}


  1. z=2x+1x21z = \frac{2x + 1}{x^2 - 1}

z=2(x21)2x(2x+1)(x21)2=2x22x2x42x2+1z' = \frac{2(x^2 - 1) - 2x(2x + 1)}{(x^2 - 1)^2} = \frac{-2x^2 - 2x - 2}{x^4 - 2x^2 + 1}


  1. g(x)=x24x+0.5g(x) = \frac{x^2 - 4}{x + 0.5}

g(x)=2x(x+0.5)x2+4(x+0.5)2=x2+x+4x2+0.25+xg'(x) = \frac{2x(x + 0.5) - x^2 + 4}{(x + 0.5)^2} = \frac{x^2 + x + 4}{x^2 + 0.25 + x}


  1. f(t)=t21t2+t2f(t) = \frac{t^2 - 1}{t^2 + t - 2}

f(t)=2t(t2+t2)(2t+1)(t21)(t2+t2)2=t22t+1t4+2t33t24t+4f'(t) = \frac{2t(t^2 + t - 2) - (2t + 1)(t^2 - 1)}{(t^2 + t - 2)^2} = \frac{t^2 - 2t + 1}{t^4 + 2t^3 -3t^2 - 4t + 4}


  1. v=(1t)(1+t2)1v = (1 - t)(1 + t^2)^{-1}

v=(1+t2)2t(1t)(1+t2)2=t22t11+t4+2t2v' = \frac{-(1 + t^2) - 2t(1 - t)}{(1 + t^2)^2} = \frac{t^2 -2t - 1}{1 + t^4 + 2t^2}


  1. w=(2x7)1(x+5)w = (2x - 7)^{-1}(x + 5)

w=2x72x10(2x7)2=174x2+4728xw' = \frac{2x - 7 - 2x - 10}{(2x - 7)^2} = \frac{-17}{4x^2 + 47 - 28x}


  1. f(s)=s1s+1f(s) = \frac{\sqrt{s} - 1}{\sqrt{s} + 1}

f(s)=12s(s+1)12s(s1)(s+1)2=12s+s+ssf'(s) = \frac{\frac{1}{2\sqrt{s}}(\sqrt{s} + 1) - \frac{1}{2\sqrt{s}}(\sqrt{s} - 1)}{(\sqrt{s} + 1)^2} = \frac{1}{2s + \sqrt{s} + s\sqrt{s}}


  1. u=5x+12xu = \frac{5x + 1}{2\sqrt{x}}

u=10x1x(5x+1)4x=5x14xxu' = \frac{10\sqrt{x} - \frac{1}{\sqrt{x}}(5x + 1)}{4x} = \frac{5x - 1}{4x\sqrt{x}}


  1. v=1+x4xxv = \frac{1 + x - 4\sqrt{x}}{x}

v=x(12x)1x+4xx2=2xxx2xv' = \frac{x(1 - \frac{2}{\sqrt{x}}) - 1 - x + 4\sqrt{x}}{x^2} = \frac{2x - \sqrt{x}}{x^2\sqrt{x}}


  1. r=2(1ϕ+ϕ)r = 2(\frac{1}{\sqrt{\phi}} + \sqrt{\phi})

r=01ϕϕ+1ϕ=ϕ1ϕϕr' = \frac{0 - \frac{1}{\sqrt{\phi}}}{\phi} + \frac{1}{\sqrt{\phi}} = \frac{\phi - 1}{\phi\sqrt{\phi}}


  1. y=1(x21)(x2+x+1)y = \frac{1}{(x^2 - 1)(x^2 + x + 1)}

y=ddx(1x4+x3x1)=4x33x2+1(x4+x3x1)2y' = \frac{d}{dx}(\frac{1}{x^4 + x^3 - x - 1}) = \frac{-4x^3 - 3x^2 + 1}{(x^4 + x^3 - x - 1)^2}


  1. y=(x+1)(x+2)(x1)(x2)y = \frac{(x + 1)(x + 2)}{(x - 1)(x - 2)}

y=ddx(x+1x1)x+2x2+ddx(x+2x2)x+1x1=2(x1)2x+2x2+4(x2)2x+1x1=6x2+8(x1)2(x2)2y' = \frac{d}{dx}(\frac{x + 1}{x - 1})\cdot \frac{x + 2}{x - 2} + \frac{d}{dx}(\frac{x + 2}{x - 2})\cdot \frac{x + 1}{x - 1} = \frac{-2}{(x - 1)^2}\cdot \frac{x + 2}{x - 2} + \frac{-4}{(x - 2)^2}\cdot \frac{x + 1}{x - 1} = \frac{-6x^2 + 8}{(x - 1)^2(x - 2)^2}