计算机毕 设 指导师
⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。
大家都可点赞、收藏、关注、有问题都可留言评论交流
实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流!
⚡⚡如果遇到具体的技术问题或计算机毕设方面需求!你也可以在个人主页上咨询我~~
家庭能源消耗数据分析与可视化系统 - 简介
基于大数据的家庭能源消耗数据分析与可视化系统是一套综合运用Hadoop分布式存储、Spark大数据计算框架以及现代Web技术的数据分析平台。该系统采用Hadoop+Spark作为核心大数据处理引擎,通过HDFS分布式文件系统存储海量家庭用电数据,利用Spark SQL进行高效的数据清洗、转换和聚合计算。系统后端基于Spring Boot框架构建RESTful API服务,前端采用Vue.js+ElementUI+ECharts技术栈实现响应式用户界面和丰富的数据可视化效果。在数据分析层面,系统实现了五大核心分析维度:家庭基本属性与能耗关联分析、外部环境温度对能耗的驱动分析、用能时间规律与行为模式分析、高峰时段用能深度分析,以及基于K-Means聚类算法的用户分群与画像构建。通过Pandas、NumPy等数据科学工具库进行统计分析,系统能够深入挖掘家庭规模、空调持有状况、温度变化、时间周期等因素对能源消耗的影响规律,并通过聚类算法将具有相似用能行为的家庭划分为不同群体,形成精准的用户画像,为家庭节能策略制定和电网负荷管理提供数据支撑。
家庭能源消耗数据分析与可视化系统 -技术
开发语言:java或Python
数据库:MySQL
系统架构:B/S
前端:Vue+ElementUI+HTML+CSS+JavaScript+jQuery+Echarts
大数据框架:Hadoop+Spark(本次没用Hive,支持定制)
后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)
家庭能源消耗数据分析与可视化系统 - 背景
选题背景
随着城市化进程不断推进和居民生活水平持续提升,家庭能源消耗已成为社会总能耗的重要组成部分。现代家庭中空调、冰箱、洗衣机等大功率电器设备普及率显著提高,不同规模家庭的用电行为呈现出复杂多样的特征。家庭能耗不仅受到内在因素如人口数量、电器配置的影响,还与外部环境如温度变化、季节周期密切相关。传统的能源管理方式往往缺乏对海量用电数据的深度挖掘和精细化分析,难以准确识别不同家庭的用能规律和行为模式。电力企业需要更加智能化的数据分析工具来理解用户需求,优化电网调度和负荷预测。随着大数据技术的成熟发展,运用Hadoop、Spark等分布式计算框架处理海量家庭用电数据,通过机器学习算法进行用户行为分析和群体画像构建,已成为能源数据分析领域的重要发展方向。
选题意义
本课题的实际意义主要体现在几个方面。从技术角度来看,该系统将理论学习与实际应用相结合,通过构建完整的大数据分析平台,能够加深对Hadoop分布式存储、Spark计算引擎、数据可视化等核心技术的理解和掌握。系统实现的多维度数据分析功能,有助于培养数据挖掘和统计分析的实际操作能力。从应用价值角度考虑,该系统能够为家庭用户提供个性化的用电行为分析报告,帮助用户了解自身用能特点,制定合理的节能策略。对于电力企业而言,系统生成的用户群体画像和负荷预测分析,可以为电网调度优化和差异化服务策略制定提供参考。从学术研究层面来说,通过探索温度、时间、家庭属性等多因素对能耗的复合影响机制,能够丰富家庭能源消耗行为的理论认知。虽然作为毕业设计项目,系统规模和复杂度相对有限,但其展现的技术架构设计思路和数据分析方法,对于后续从事相关领域工作具有一定的实践指导价值。
家庭能源消耗数据分析与可视化系统 -图片展示
家庭能源消耗数据分析与可视化系统 -代码展示
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.functions;
import org.apache.spark.ml.clustering.KMeans;
import org.apache.spark.ml.feature.VectorAssembler;
import org.apache.spark.ml.clustering.KMeansModel;
import org.springframework.stereotype.Service;
import java.util.List;
import java.util.Map;
import java.util.HashMap;
@Service
public class EnergyAnalysisService {
private SparkSession spark = SparkSession.builder().appName("EnergyConsumptionAnalysis").master("local[*]").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate();
public Map<String, Object> analyzeHouseholdEnergyConsumption() {
Dataset<Row> energyData = spark.read().format("jdbc").option("url", "jdbc:mysql://localhost:3306/energy_db").option("dbtable", "household_energy").option("user", "root").option("password", "123456").load();
energyData.createOrReplaceTempView("energy_consumption");
Dataset<Row> householdSizeAnalysis = spark.sql("SELECT Household_Size, AVG(Energy_Consumption_kWh) as avg_consumption, COUNT(*) as household_count FROM energy_consumption GROUP BY Household_Size ORDER BY Household_Size");
Dataset<Row> perCapitaConsumption = spark.sql("SELECT Household_Size, AVG(Energy_Consumption_kWh / Household_Size) as per_capita_consumption FROM energy_consumption WHERE Household_Size > 0 GROUP BY Household_Size ORDER BY Household_Size");
Dataset<Row> acImpactAnalysis = spark.sql("SELECT Has_AC, AVG(Energy_Consumption_kWh) as avg_consumption, COUNT(*) as household_count FROM energy_consumption GROUP BY Has_AC");
Dataset<Row> crossAnalysis = spark.sql("SELECT Household_Size, Has_AC, AVG(Energy_Consumption_kWh) as avg_consumption, COUNT(*) as household_count FROM energy_consumption GROUP BY Household_Size, Has_AC ORDER BY Household_Size, Has_AC");
Dataset<Row> acPenetrationRate = spark.sql("SELECT Household_Size, SUM(CASE WHEN Has_AC = 'Yes' THEN 1 ELSE 0 END) * 100.0 / COUNT(*) as ac_penetration_rate FROM energy_consumption GROUP BY Household_Size ORDER BY Household_Size");
Map<String, Object> result = new HashMap<>();
result.put("householdSizeAnalysis", householdSizeAnalysis.collectAsList());
result.put("perCapitaConsumption", perCapitaConsumption.collectAsList());
result.put("acImpactAnalysis", acImpactAnalysis.collectAsList());
result.put("crossAnalysis", crossAnalysis.collectAsList());
result.put("acPenetrationRate", acPenetrationRate.collectAsList());
return result;
}
public Map<String, Object> analyzeTemperatureEnergyCorrelation() {
Dataset<Row> energyData = spark.read().format("jdbc").option("url", "jdbc:mysql://localhost:3306/energy_db").option("dbtable", "household_energy").option("user", "root").option("password", "123456").load();
energyData.createOrReplaceTempView("energy_temp_data");
Dataset<Row> dailyTempConsumption = spark.sql("SELECT Date, AVG(Avg_Temperature_C) as daily_avg_temp, SUM(Energy_Consumption_kWh) as daily_total_consumption FROM energy_temp_data GROUP BY Date ORDER BY Date");
Dataset<Row> temperatureRangeAnalysis = spark.sql("SELECT CASE WHEN Avg_Temperature_C < 15 THEN 'Low(<15°C)' WHEN Avg_Temperature_C BETWEEN 15 AND 25 THEN 'Comfortable(15-25°C)' ELSE 'High(>25°C)' END as temp_range, AVG(Energy_Consumption_kWh) as avg_consumption, COUNT(*) as record_count FROM energy_temp_data GROUP BY CASE WHEN Avg_Temperature_C < 15 THEN 'Low(<15°C)' WHEN Avg_Temperature_C BETWEEN 15 AND 25 THEN 'Comfortable(15-25°C)' ELSE 'High(>25°C)' END");
Dataset<Row> acTempCorrelation = spark.sql("SELECT Has_AC, CASE WHEN Avg_Temperature_C < 15 THEN 'Low(<15°C)' WHEN Avg_Temperature_C BETWEEN 15 AND 25 THEN 'Comfortable(15-25°C)' ELSE 'High(>25°C)' END as temp_range, AVG(Energy_Consumption_kWh) as avg_consumption FROM energy_temp_data GROUP BY Has_AC, CASE WHEN Avg_Temperature_C < 15 THEN 'Low(<15°C)' WHEN Avg_Temperature_C BETWEEN 15 AND 25 THEN 'Comfortable(15-25°C)' ELSE 'High(>25°C)' END ORDER BY Has_AC, temp_range");
Dataset<Row> highTempHouseholdAnalysis = spark.sql("SELECT Household_Size, AVG(Energy_Consumption_kWh) as avg_consumption_high_temp FROM energy_temp_data WHERE Avg_Temperature_C > 25 GROUP BY Household_Size ORDER BY Household_Size");
Dataset<Row> temperatureSensitivity = energyData.withColumn("temp_sensitivity", functions.when(functions.col("Avg_Temperature_C").gt(25), functions.col("Energy_Consumption_kWh").minus(functions.avg("Energy_Consumption_kWh").over())).otherwise(0));
Map<String, Object> result = new HashMap<>();
result.put("dailyTempConsumption", dailyTempConsumption.collectAsList());
result.put("temperatureRangeAnalysis", temperatureRangeAnalysis.collectAsList());
result.put("acTempCorrelation", acTempCorrelation.collectAsList());
result.put("highTempHouseholdAnalysis", highTempHouseholdAnalysis.collectAsList());
return result;
}
public Map<String, Object> performUserClustering() {
Dataset<Row> energyData = spark.read().format("jdbc").option("url", "jdbc:mysql://localhost:3306/energy_db").option("dbtable", "household_energy").option("user", "root").option("password", "123456").load();
energyData.createOrReplaceTempView("clustering_data");
Dataset<Row> householdFeatures = spark.sql("SELECT Household_ID, AVG(Energy_Consumption_kWh / Household_Size) as per_capita_consumption, AVG(Peak_Hours_Usage_kWh / Energy_Consumption_kWh) as peak_usage_ratio, AVG(CASE WHEN Avg_Temperature_C > 25 THEN Energy_Consumption_kWh ELSE 0 END) as high_temp_consumption FROM clustering_data WHERE Household_Size > 0 GROUP BY Household_ID");
VectorAssembler assembler = new VectorAssembler().setInputCols(new String[]{"per_capita_consumption", "peak_usage_ratio", "high_temp_consumption"}).setOutputCol("features");
Dataset<Row> featureData = assembler.transform(householdFeatures);
KMeans kmeans = new KMeans().setK(4).setSeed(1L).setFeaturesCol("features").setPredictionCol("cluster");
KMeansModel model = kmeans.fit(featureData);
Dataset<Row> clusteredData = model.transform(featureData);
clusteredData.createOrReplaceTempView("clustered_households");
Dataset<Row> clusterProfiles = spark.sql("SELECT cluster, COUNT(*) as household_count, AVG(per_capita_consumption) as avg_per_capita_consumption, AVG(peak_usage_ratio) as avg_peak_ratio, AVG(high_temp_consumption) as avg_high_temp_consumption FROM clustered_households GROUP BY cluster ORDER BY cluster");
Dataset<Row> originalDataWithClusters = energyData.join(clusteredData.select("Household_ID", "cluster"), "Household_ID");
originalDataWithClusters.createOrReplaceTempView("household_clusters");
Dataset<Row> clusterHouseholdSizeDistribution = spark.sql("SELECT cluster, Household_Size, COUNT(*) as count FROM household_clusters GROUP BY cluster, Household_Size ORDER BY cluster, Household_Size");
Dataset<Row> clusterACDistribution = spark.sql("SELECT cluster, Has_AC, COUNT(*) as count FROM household_clusters GROUP BY cluster, Has_AC ORDER BY cluster, Has_AC");
Dataset<Row> clusterEnergyStats = spark.sql("SELECT cluster, AVG(Energy_Consumption_kWh) as avg_total_consumption, AVG(Peak_Hours_Usage_kWh) as avg_peak_consumption FROM household_clusters GROUP BY cluster ORDER BY cluster");
Map<String, Object> result = new HashMap<>();
result.put("clusterProfiles", clusterProfiles.collectAsList());
result.put("clusterHouseholdSizeDistribution", clusterHouseholdSizeDistribution.collectAsList());
result.put("clusterACDistribution", clusterACDistribution.collectAsList());
result.put("clusterEnergyStats", clusterEnergyStats.collectAsList());
result.put("totalClusters", 4);
return result;
}
}
家庭能源消耗数据分析与可视化系统 -结语
毕设技术落后可能延毕:Hadoop+Spark家庭能源分析系统拯救你的答辩
同样是数据分析毕设,为什么大数据技术栈的能源消耗系统更容易通过答辩?
大数据毕设不知道怎么做?家庭能源消耗分析系统Hadoop+Spark完美解决
支持我记得一键三连+关注,感谢支持,有技术问题、求源码,欢迎在评论区交流!支持我记得一键三连+关注,感谢支持,有技术问题、求源码,欢迎在评论区交流!
⚡⚡如果遇到具体的技术问题或计算机毕设方面需求!你也可以在个人主页上咨询我~~