计算机毕 设 指导师
⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。
大家都可点赞、收藏、关注、有问题都可留言评论交流
实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流!
⚡⚡如果遇到具体的技术问题或计算机毕设方面需求!你也可以在个人主页上咨询我~~
⚡⚡获取源码主页-->:计算机毕设指导师
结核病数据可视化分析系统 - 简介
基于Hadoop+Spark的结核病数据可视化分析系统是一个专门针对结核病患者数据进行深度挖掘和可视化展示的大数据分析平台。该系统采用Hadoop分布式文件系统(HDFS)作为数据存储基础,利用Spark强大的内存计算能力进行大规模数据处理,通过Python+Django或Java+SpringBoot构建后端服务架构,前端采用Vue+ElementUI+Echarts技术栈实现交互式数据可视化界面。系统核心功能涵盖患者基本特征与结核病关联性分析、临床核心症状与患病概率分析、生活习惯及病史风险评估以及多维关联与核心风险因子挖掘四大维度。通过Spark SQL和Pandas、NumPy等数据分析工具,系统能够处理年龄分布、性别差异、症状严重程度、吸烟史、既往病史等多维度数据,生成直观的统计图表和热力图,为医疗工作者提供科学的数据支持。系统运用机器学习算法进行特征重要性排序和关联规则挖掘,能够识别结核病高危人群特征,分析症状共现模式,为临床诊断和公共卫生防控决策提供数据驱动的参考依据。
结核病数据可视化分析系统 -技术
开发语言:java或Python
数据库:MySQL
系统架构:B/S
前端:Vue+ElementUI+HTML+CSS+JavaScript+jQuery+Echarts
大数据框架:Hadoop+Spark(本次没用Hive,支持定制)
后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)
结核病数据可视化分析系统 - 背景
结核病作为全球性的重大传染病,每年影响着数百万人的健康,传统的医疗数据分析方法在面对海量患者信息时往往存在处理效率低下、分析维度单一等问题。随着医疗信息化程度不断提升,各级医疗机构积累了大量的患者病历、症状记录、检查结果等结构化和半结构化数据,这些数据蕴含着丰富的疾病规律和诊断线索,但缺乏有效的技术手段进行深度挖掘。现有的数据分析工具多数基于传统的关系型数据库和单机处理模式,难以应对大规模数据集的实时分析需求,也无法充分发挥多维度数据融合分析的优势。医疗领域迫切需要借助大数据技术构建智能化的数据分析平台,通过先进的分布式计算框架来提升数据处理能力,为疾病预防、诊断辅助和流行病学研究提供更加精准和高效的技术支撑,这为结核病数据分析系统的开发提供了现实需求和技术背景。
本系统的开发具有一定的理论价值和实践意义,能够为医疗大数据分析领域提供一个相对完整的技术解决方案。从技术角度来看,系统实现了Hadoop和Spark在医疗数据处理中的具体应用,验证了大数据技术在处理复杂医疗信息方面的可行性,为相关技术的推广应用积累了实践经验。从应用价值来看,系统通过多维度的数据分析和可视化展示,能够帮助医疗工作者更直观地理解患者群体特征和疾病发展规律,在一定程度上提升诊断效率和准确性。同时,系统生成的统计分析结果可以为公共卫生部门制定防控策略提供数据参考,有助于合理配置医疗资源和识别高危人群。对于计算机专业学生而言,该项目涵盖了大数据处理、机器学习、Web开发等多个技术领域,能够较好地锻炼综合技术能力和项目实践经验,虽然作为毕业设计在规模和复杂度上有所限制,但仍能展现出大数据技术在实际场景中的应用潜力。
结核病数据可视化分析系统 -视频展示
结核病数据可视化分析系统 -图片展示
结核病数据可视化分析系统 -代码展示
from pyspark.sql.functions import col, count, avg, when, desc
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import RandomForestClassifier
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
import pandas as pd
import numpy as np
spark = SparkSession.builder.appName("TuberculosisDataAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()
def analyze_patient_basic_features(data_path):
df = spark.read.option("header", "true").option("inferSchema", "true").csv(data_path)
age_groups = df.withColumn("age_group", when(col("Age") < 18, "少年").when(col("Age") < 30, "青年").when(col("Age") < 50, "中年").otherwise("老年"))
age_analysis = age_groups.groupBy("age_group", "Class").agg(count("*").alias("count")).orderBy("age_group", "Class")
age_stats = age_analysis.toPandas()
gender_analysis = df.groupBy("Gender", "Class").agg(count("*").alias("count")).orderBy("Gender", "Class")
gender_stats = gender_analysis.toPandas()
cross_analysis = df.groupBy("Gender", "age_group", "Class").agg(count("*").alias("count")).orderBy("Gender", "age_group", "Class")
cross_stats = cross_analysis.toPandas()
weight_analysis = df.groupBy("Class").agg(avg("Weight_Loss").alias("avg_weight_loss")).orderBy("Class")
weight_stats = weight_analysis.toPandas()
total_patients = df.count()
positive_cases = df.filter(col("Class") == 1).count()
infection_rate = positive_cases / total_patients if total_patients > 0 else 0
high_risk_groups = cross_analysis.filter(col("count") > 10).toPandas()
result_data = {"age_distribution": age_stats.to_dict("records"), "gender_distribution": gender_stats.to_dict("records"), "cross_analysis": cross_stats.to_dict("records"), "weight_loss_stats": weight_stats.to_dict("records"), "overall_infection_rate": infection_rate, "high_risk_groups": high_risk_groups.to_dict("records")}
return result_data
def analyze_clinical_symptoms_correlation(data_path):
df = spark.read.option("header", "true").option("inferSchema", "true").csv(data_path)
cough_analysis = df.groupBy("Cough_Severity", "Class").agg(count("*").alias("count")).orderBy("Cough_Severity", "Class")
cough_stats = cough_analysis.toPandas()
breathlessness_analysis = df.groupBy("Breathlessness", "Class").agg(count("*").alias("count")).orderBy("Breathlessness", "Class")
breathlessness_stats = breathlessness_analysis.toPandas()
fatigue_analysis = df.groupBy("Fatigue", "Class").agg(count("*").alias("count")).orderBy("Fatigue", "Class")
fatigue_stats = fatigue_analysis.toPandas()
fever_analysis = df.groupBy("Fever", "Class").agg(count("*").alias("count")).orderBy("Fever", "Class")
fever_stats = fever_analysis.toPandas()
positive_symptoms = df.select("Chest_Pain", "Night_Sweats", "Blood_in_Sputum", "Class")
chest_pain_rate = positive_symptoms.filter(col("Chest_Pain") == 1).groupBy("Class").agg(count("*").alias("count")).toPandas()
night_sweats_rate = positive_symptoms.filter(col("Night_Sweats") == 1).groupBy("Class").agg(count("*").alias("count")).toPandas()
blood_sputum_rate = positive_symptoms.filter(col("Blood_in_Sputum") == 1).groupBy("Class").agg(count("*").alias("count")).toPandas()
symptom_severity_avg = df.groupBy("Class").agg(avg("Cough_Severity").alias("avg_cough"), avg("Breathlessness").alias("avg_breathlessness"), avg("Fatigue").alias("avg_fatigue")).toPandas()
high_severity_patients = df.filter((col("Cough_Severity") >= 7) | (col("Breathlessness") >= 3) | (col("Fatigue") >= 7))
high_severity_stats = high_severity_patients.groupBy("Class").agg(count("*").alias("count")).toPandas()
correlation_matrix = df.select("Cough_Severity", "Breathlessness", "Fatigue", "Fever", "Class").toPandas().corr()
result_data = {"cough_severity_stats": cough_stats.to_dict("records"), "breathlessness_stats": breathlessness_stats.to_dict("records"), "fatigue_stats": fatigue_stats.to_dict("records"), "fever_stats": fever_stats.to_dict("records"), "chest_pain_positive": chest_pain_rate.to_dict("records"), "night_sweats_positive": night_sweats_rate.to_dict("records"), "blood_sputum_positive": blood_sputum_rate.to_dict("records"), "symptom_severity_avg": symptom_severity_avg.to_dict("records"), "high_severity_stats": high_severity_stats.to_dict("records"), "correlation_matrix": correlation_matrix.to_dict()}
return result_data
def perform_feature_importance_analysis(data_path):
df = spark.read.option("header", "true").option("inferSchema", "true").csv(data_path)
feature_columns = ["Age", "Gender", "Weight_Loss", "Cough_Severity", "Breathlessness", "Fatigue", "Fever", "Chest_Pain", "Night_Sweats", "Blood_in_Sputum", "Smoking_History", "Previous_TB_History"]
numeric_df = df.select(*feature_columns, "Class")
for col_name in numeric_df.columns:
if col_name != "Class":
numeric_df = numeric_df.withColumn(col_name, col(col_name).cast("double"))
assembler = VectorAssembler(inputCols=feature_columns, outputCol="features")
vectorized_df = assembler.transform(numeric_df)
train_data, test_data = vectorized_df.randomSplit([0.8, 0.2], seed=42)
rf = RandomForestClassifier(labelCol="Class", featuresCol="features", numTrees=100, maxDepth=10, seed=42)
rf_model = rf.fit(train_data)
feature_importance = rf_model.featureImportances.toArray()
importance_df = pd.DataFrame({"feature": feature_columns, "importance": feature_importance})
importance_df = importance_df.sort_values("importance", ascending=False)
predictions = rf_model.transform(test_data)
evaluator = MulticlassClassificationEvaluator(labelCol="Class", predictionCol="prediction", metricName="accuracy")
accuracy = evaluator.evaluate(predictions)
correlation_analysis = numeric_df.toPandas().corr()["Class"].abs().sort_values(ascending=False)
confirmed_patients = df.filter(col("Class") == 1)
symptom_cooccurrence = confirmed_patients.select("Chest_Pain", "Night_Sweats", "Blood_in_Sputum", "Fever").toPandas()
cooccurrence_stats = {}
for i, col1 in enumerate(symptom_cooccurrence.columns):
for j, col2 in enumerate(symptom_cooccurrence.columns[i+1:], i+1):
both_positive = ((symptom_cooccurrence[col1] == 1) & (symptom_cooccurrence[col2] == 1)).sum()
cooccurrence_stats[f"{col1}_{col2}"] = both_positive
risk_factor_analysis = df.groupBy("Smoking_History", "Previous_TB_History", "Class").agg(count("*").alias("count")).toPandas()
result_data = {"feature_importance": importance_df.to_dict("records"), "model_accuracy": accuracy, "correlation_with_class": correlation_analysis.to_dict(), "symptom_cooccurrence": cooccurrence_stats, "risk_factor_analysis": risk_factor_analysis.to_dict("records"), "top_features": importance_df.head(5).to_dict("records")}
return result_data
结核病数据可视化分析系统 -结语
Hadoop+Spark太复杂学不会?结核病数据可视化分析系统带你轻松入门
哪些大数据技术让结核病数据分析如此高效?Hadoop+Spark+Django组合的秘密
不懂大数据技术的毕设已过时:Spark+Django结核病分析系统才是主流趋势
如果遇到具体的技术问题或计算机毕设方面需求,主页上咨询我,我会尽力帮你分析和解决问题所在,支持我记得一键三连,再点个关注,学习不迷路!
⚡⚡获取源码主页-->:计算机毕设指导师
⚡⚡如果遇到具体的技术问题或计算机毕设方面需求!你也可以在个人主页上咨询我~~