【5大维度26种分析功能】农作物产量大数据可视化系统Hadoop+Spark技术详解毕业设计/选题推荐/毕设选题/数据分析

61 阅读8分钟

计算机毕 指导师

⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。

大家都可点赞、收藏、关注、有问题都可留言评论交流

实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流!

⚡⚡如果遇到具体的技术问题或计算机毕设方面需求!你也可以在个人主页上咨询我~~

⚡⚡获取源码主页-->:计算机毕设指导师

农作物产量数据分析与可视化系统 - 简介

基于Spark+MySQL的农作物产量数据分析与可视化系统是一个集大数据处理、多维度分析和可视化展示于一体的综合性平台。该系统采用Hadoop+Spark大数据框架作为核心处理引擎,结合MySQL数据库进行数据存储管理,通过Python和Java双语言支持,为用户提供灵活的开发选择。在前端展示方面,系统运用Vue+ElementUI构建用户界面,集成Echarts图表库实现数据的动态可视化呈现。系统围绕农作物产量数据展开深度挖掘,涵盖地理环境因素影响分析、农业生产措施效益评估、作物种类与生长周期关系探究、气候条件影响研究以及多维度综合模式挖掘等五大核心分析维度。通过Spark SQL强大的数据处理能力,系统能够高效处理大规模农业数据,实现从区域产量对比、土壤类型分析到化肥灌溉效果评估等26种细分功能。整个系统不仅支持传统的数据查询统计,更通过机器学习算法思想进行高产模式挖掘和特征画像分析,为农业决策提供科学依据,充分体现了大数据技术在农业领域的应用价值。

农作物产量数据分析与可视化系统 -技术

开发语言:java或Python

数据库:MySQL

系统架构:B/S

前端:Vue+ElementUI+HTML+CSS+JavaScript+jQuery+Echarts

大数据框架:Hadoop+Spark(本次没用Hive,支持定制)

后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)

农作物产量数据分析与可视化系统-背景

随着我国农业现代化进程的不断推进和乡村振兴战略的深入实施,农业数据的规模和复杂度呈现指数级增长态势。传统的农业数据分析方法在面对海量、多源、异构的农业数据时显得力不从心,难以满足现代农业精准化管理的需求。农作物产量数据作为农业生产的核心指标,涉及地理环境、气候变化、种植技术、土壤条件等多个维度的复杂交互关系,这些海量数据的有效处理和深度挖掘已成为农业信息化发展的关键瓶颈。与此同时,大数据技术特别是Spark等分布式计算框架的日趋成熟,为农业数据的高效处理提供了新的技术路径。当前农业管理部门和种植户迫切需要一套能够整合多维度数据、快速响应分析需求、直观呈现分析结果的智能化工具,以支撑科学的农业决策制定。

本课题的研究意义主要体现在理论价值和实践应用两个层面。从理论角度来看,该系统探索了大数据技术在农业领域的具体应用模式,验证了Spark+MySQL技术架构在处理农业多维度数据方面的有效性,为后续相关研究提供了技术参考和实践经验。系统通过构建完整的农业数据分析框架,丰富了农业信息化的技术体系,对推动农业与信息技术深度融合具有一定的促进作用。在实际应用价值方面,该系统能够为农业管理部门提供数据驱动的决策支持,帮助识别影响农作物产量的关键因素和最优种植策略。对于普通种植户而言,系统提供的区域适宜性分析和高产模式挖掘功能,可以指导他们选择合适的作物品种和种植方案。作为一个毕业设计项目,该系统虽然在数据规模和算法复杂度上存在一定局限性,但其完整的技术架构和多维度分析功能设计,展现了大数据技术解决实际农业问题的潜力,为相关领域的深入研究奠定了基础。农作物产量数据分析与可视化系统-视频展示

 

农作物产量数据分析与可视化系统 -图片展示

产量多维综合分析.png

地理环境影响分析.png

登录.png

封面.png

农作物产量数据.png

农作物周期产量分析.png

气候影响关联分析.png

生产措施效果分析.png

数据大屏上.png

数据大屏下.png

用户.png

农作物产量数据分析与可视化系统-视频展示

www.bilibili.com/video/BV1La…

农作物产量数据分析与可视化系统 -代码展示

from pyspark.sql.functions import col, avg, count, when, desc, asc
from pyspark.sql.types import StructType, StructField, StringType, DoubleType, IntegerType
import pandas as pd
import numpy as np
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
import json

spark = SparkSession.builder.appName("CropYieldAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()

def regional_yield_comparison_analysis(request):
    crop_data = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/crop_data/cleaned_crop_yield.csv")
    crop_data.createOrReplaceTempView("crop_yield_table")
    regional_stats = spark.sql("SELECT Region, AVG(Yield_tons_per_hectare) as avg_yield, COUNT(*) as sample_count, STDDEV(Yield_tons_per_hectare) as yield_stddev FROM crop_yield_table GROUP BY Region ORDER BY avg_yield DESC")
    regional_ranking = regional_stats.withColumn("rank", row_number().over(Window.orderBy(desc("avg_yield"))))
    yield_distribution = crop_data.groupBy("Region").agg(avg("Yield_tons_per_hectare").alias("average_yield"), count("*").alias("total_samples"), (count(when(col("Yield_tons_per_hectare") > 5.0, True)) / count("*") * 100).alias("high_yield_percentage"))
    regional_comparison_result = yield_distribution.join(regional_ranking, "Region", "inner")
    climate_factor_impact = crop_data.groupBy("Region", "Weather_Condition").agg(avg("Yield_tons_per_hectare").alias("climate_avg_yield"))
    regional_climate_analysis = climate_factor_impact.groupBy("Region").pivot("Weather_Condition").agg(avg("climate_avg_yield"))
    soil_region_interaction = crop_data.groupBy("Region", "Soil_Type").agg(avg("Yield_tons_per_hectare").alias("soil_region_yield"))
    comprehensive_regional_data = regional_comparison_result.join(regional_climate_analysis, "Region", "left").join(soil_region_interaction.groupBy("Region").agg(avg("soil_region_yield").alias("avg_soil_yield")), "Region", "left")
    regional_productivity_index = comprehensive_regional_data.withColumn("productivity_index", col("average_yield") * col("high_yield_percentage") / 100)
    final_regional_analysis = regional_productivity_index.select("Region", "average_yield", "total_samples", "high_yield_percentage", "productivity_index").orderBy(desc("productivity_index"))
    result_data = final_regional_analysis.collect()
    analysis_summary = {"total_regions": len(result_data), "highest_yield_region": result_data[0]["Region"] if result_data else None, "lowest_yield_region": result_data[-1]["Region"] if result_data else None, "average_yield_all_regions": sum([row["average_yield"] for row in result_data]) / len(result_data) if result_data else 0}
    response_data = {"regional_analysis": [row.asDict() for row in result_data], "summary": analysis_summary, "status": "success"}
    return JsonResponse(response_data)

def fertilizer_irrigation_synergy_analysis(request):
    crop_data = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/crop_data/cleaned_crop_yield.csv")
    crop_data.createOrReplaceTempView("crop_yield_table")
    synergy_analysis = spark.sql("SELECT CASE WHEN Fertilizer_Used = 'Yes' AND Irrigation_Used = 'Yes' THEN 'Both_Used' WHEN Fertilizer_Used = 'Yes' AND Irrigation_Used = 'No' THEN 'Fertilizer_Only' WHEN Fertilizer_Used = 'No' AND Irrigation_Used = 'Yes' THEN 'Irrigation_Only' ELSE 'Neither_Used' END as treatment_combination, AVG(Yield_tons_per_hectare) as avg_yield, COUNT(*) as sample_count FROM crop_yield_table GROUP BY treatment_combination ORDER BY avg_yield DESC")
    fertilizer_effect = crop_data.groupBy("Fertilizer_Used").agg(avg("Yield_tons_per_hectare").alias("fertilizer_avg_yield"))
    irrigation_effect = crop_data.groupBy("Irrigation_Used").agg(avg("Yield_tons_per_hectare").alias("irrigation_avg_yield"))
    crop_specific_synergy = crop_data.groupBy("Crop", "Fertilizer_Used", "Irrigation_Used").agg(avg("Yield_tons_per_hectare").alias("crop_treatment_yield"))
    crop_synergy_pivot = crop_specific_synergy.groupBy("Crop").pivot("Fertilizer_Used").agg(avg("crop_treatment_yield"))
    regional_treatment_effectiveness = crop_data.groupBy("Region", "Fertilizer_Used", "Irrigation_Used").agg(avg("Yield_tons_per_hectare").alias("regional_treatment_yield"))
    soil_treatment_interaction = crop_data.groupBy("Soil_Type", "Fertilizer_Used", "Irrigation_Used").agg(avg("Yield_tons_per_hectare").alias("soil_treatment_yield"))
    synergy_coefficient_calculation = crop_data.withColumn("expected_yield", when((col("Fertilizer_Used") == "Yes") & (col("Irrigation_Used") == "Yes"), col("Yield_tons_per_hectare")).otherwise(0))
    synergy_metrics = synergy_coefficient_calculation.groupBy().agg(avg(when(col("Fertilizer_Used") == "Yes", col("Yield_tons_per_hectare"))).alias("fertilizer_only_avg"), avg(when(col("Irrigation_Used") == "Yes", col("Yield_tons_per_hectare"))).alias("irrigation_only_avg"), avg(when((col("Fertilizer_Used") == "Yes") & (col("Irrigation_Used") == "Yes"), col("Yield_tons_per_hectare"))).alias("both_treatment_avg"))
    cost_benefit_analysis = crop_data.withColumn("yield_increase", when((col("Fertilizer_Used") == "Yes") | (col("Irrigation_Used") == "Yes"), col("Yield_tons_per_hectare") - 3.5).otherwise(0))
    investment_effectiveness = cost_benefit_analysis.groupBy("Fertilizer_Used", "Irrigation_Used").agg(avg("yield_increase").alias("avg_yield_increase"), count("*").alias("adoption_count"))
    comprehensive_synergy_data = synergy_analysis.collect()
    synergy_summary = {"highest_yield_combination": comprehensive_synergy_data[0]["treatment_combination"] if comprehensive_synergy_data else None, "yield_improvement_percentage": ((comprehensive_synergy_data[0]["avg_yield"] / comprehensive_synergy_data[-1]["avg_yield"] - 1) * 100) if len(comprehensive_synergy_data) > 1 else 0}
    response_data = {"synergy_analysis": [row.asDict() for row in comprehensive_synergy_data], "summary": synergy_summary, "status": "success"}
    return JsonResponse(response_data)

def high_yield_pattern_mining_analysis(request):
    crop_data = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/crop_data/cleaned_crop_yield.csv")
    crop_data.createOrReplaceTempView("crop_yield_table")
    yield_percentiles = crop_data.select("Yield_tons_per_hectare").rdd.map(lambda x: x[0]).collect()
    yield_array = np.array(yield_percentiles)
    high_yield_threshold = np.percentile(yield_array, 80)
    low_yield_threshold = np.percentile(yield_array, 20)
    pattern_mining_data = crop_data.withColumn("yield_category", when(col("Yield_tons_per_hectare") >= high_yield_threshold, "High_Yield").when(col("Yield_tons_per_hectare") <= low_yield_threshold, "Low_Yield").otherwise("Medium_Yield"))
    high_yield_characteristics = pattern_mining_data.filter(col("yield_category") == "High_Yield")
    low_yield_characteristics = pattern_mining_data.filter(col("yield_category") == "Low_Yield")
    high_yield_region_distribution = high_yield_characteristics.groupBy("Region").count().withColumnRenamed("count", "high_yield_count")
    high_yield_soil_distribution = high_yield_characteristics.groupBy("Soil_Type").count().withColumnRenamed("count", "high_yield_soil_count")
    high_yield_crop_distribution = high_yield_characteristics.groupBy("Crop").count().withColumnRenamed("count", "high_yield_crop_count")
    high_yield_treatment_pattern = high_yield_characteristics.groupBy("Fertilizer_Used", "Irrigation_Used").count().withColumnRenamed("count", "high_yield_treatment_count")
    low_yield_region_distribution = low_yield_characteristics.groupBy("Region").count().withColumnRenamed("count", "low_yield_count")
    low_yield_soil_distribution = low_yield_characteristics.groupBy("Soil_Type").count().withColumnRenamed("count", "low_yield_soil_count")
    optimal_combination_mining = high_yield_characteristics.groupBy("Region", "Soil_Type", "Crop").agg(avg("Yield_tons_per_hectare").alias("combination_avg_yield"), count("*").alias("combination_frequency"))
    top_combinations = optimal_combination_mining.filter(col("combination_frequency") >= 3).orderBy(desc("combination_avg_yield"))
    weather_pattern_analysis = high_yield_characteristics.groupBy("Weather_Condition").agg(avg("Temperature_Celsius").alias("optimal_temperature"), avg("Rainfall_mm").alias("optimal_rainfall"), count("*").alias("weather_frequency"))
    growth_cycle_pattern = high_yield_characteristics.groupBy().agg(avg("Days_to_Harvest").alias("optimal_growth_days"))
    risk_factor_identification = low_yield_characteristics.groupBy("Weather_Condition", "Fertilizer_Used", "Irrigation_Used").count().withColumnRenamed("count", "risk_occurrence")
    pattern_rules_generation = high_yield_characteristics.groupBy("Region", "Fertilizer_Used", "Irrigation_Used").agg(count("*").alias("rule_support"), avg("Yield_tons_per_hectare").alias("rule_confidence"))
    association_rules = pattern_rules_generation.filter(col("rule_support") >= 5).orderBy(desc("rule_confidence"))
    high_yield_summary_stats = high_yield_characteristics.agg(count("*").alias("high_yield_samples"), avg("Yield_tons_per_hectare").alias("high_yield_average"))
    pattern_mining_results = {"high_yield_patterns": [row.asDict() for row in top_combinations.collect()], "optimal_weather": [row.asDict() for row in weather_pattern_analysis.collect()], "association_rules": [row.asDict() for row in association_rules.collect()], "summary_statistics": high_yield_summary_stats.collect()[0].asDict()}
    return JsonResponse({"pattern_mining_results": pattern_mining_results, "status": "success"})

 

农作物产量数据分析与可视化系统 -结语

大学导师强推:2026年最值得做的农作物数据可视化系统Hadoop+Spark技术详解

2026届注意:没有Spark+Hadoop技术栈的数据分析毕设已成导师淘汰首选

数据分析+可视化+大数据三大难题?这套农作物产量系统Hadoop+Spark一次搞定

支持我记得一键三连+关注,感谢支持,有技术问题、求源码,欢迎在评论区交流!

 

⚡⚡获取源码主页-->:计算机毕设指导师

⚡⚡如果遇到具体的技术问题或计算机毕设方面需求!你也可以在个人主页上咨询我~~