导师从不告诉你的大数据毕设选题内幕:世界五百强企业数据分析系统为什么必过 毕业设计/选题推荐/深度学习/数据分析/机器学习/数据挖掘/随机森林

143 阅读9分钟

计算机毕设指导师

⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。

大家都可点赞、收藏、关注、有问题都可留言评论交流

实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流!

⚡⚡如果遇到具体的技术问题或计算机毕设方面需求!你也可以在个人主页上↑↑联系我~~

⚡⚡获取源码主页-->:计算机毕设指导师

世界五百强企业数据分析与可视化系统-简介

基于Spark+Django的世界五百强企业数据分析与可视化系统是一个集成了大数据处理技术的综合性分析平台,该系统运用Hadoop分布式存储架构和Spark大数据计算引擎,结合Django Web框架构建了完整的数据分析解决方案。系统采用Python作为主要开发语言,通过Spark SQL进行高效的数据查询和处理,利用Pandas和NumPy进行深度数据分析,前端采用Vue+ElementUI+Echarts技术栈实现丰富的数据可视化展示。系统核心功能涵盖企业地理分布与经济影响分析、行业结构与绩效分析、企业规模与效益关系分析以及特殊企业群体分析四大模块,能够从多个维度深入剖析世界五百强企业的经营状况和发展趋势。通过HDFS存储海量企业数据,运用Spark强大的分布式计算能力处理复杂的统计分析任务,系统能够快速生成各类企业分析报表和可视化图表,为用户提供直观的数据洞察和决策支持。  

世界五百强企业数据分析与可视化系统-技术

开发语言:java或Python

数据库:MySQL

系统架构:B/S

前端:Vue+ElementUI+HTML+CSS+JavaScript+jQuery+Echarts

大数据框架:Hadoop+Spark(本次没用Hive,支持定制)

后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)

世界五百强企业数据分析与可视化系统- 背景

随着全球经济一体化程度不断深入,世界五百强企业作为全球经济的重要组成部分,其发展状况直接影响着国际经济格局和产业发展趋势。这些大型跨国企业在全球范围内的布局、行业分布、财务表现等信息蕴含着丰富的经济规律和商业价值,对于学术研究、投资决策、政策制定都具有重要的参考意义。传统的数据分析方法在处理海量企业数据时往往面临处理效率低下、计算能力不足的问题,难以满足对大规模企业数据进行深度挖掘和实时分析的需求。大数据技术的快速发展为企业数据分析提供了新的解决思路,Hadoop生态系统和Spark计算引擎的出现使得处理TB级别的企业数据成为可能。学术界和产业界对于运用现代大数据技术分析世界五百强企业发展规律的需求日益迫切,这为本课题的研究提供了良好的技术基础和实际需求背景。

本课题通过构建基于Spark+Django的世界五百强企业数据分析系统,在技术层面探索了大数据框架在企业数据处理中的应用实践,为类似的数据分析项目提供了一个可参考的技术架构和实现方案。从实际应用角度来看,系统能够帮助投资者更好地了解不同国家、地区和行业的企业表现差异,为投资组合优化提供数据支撑。对于政策制定者而言,系统分析结果可以揭示各国产业结构特点和竞争优势,有助于制定更加科学的产业发展政策。从学术研究价值来说,系统生成的多维度分析报告能够为经济学、管理学等相关领域的研究工作提供实证数据基础。作为一个毕业设计项目,该系统展示了大数据技术与实际业务场景结合的可行性,通过完整的系统开发过程,加深了对Hadoop、Spark等大数据技术的理解和应用能力。虽然作为学生作品在功能深度和系统复杂度方面相对有限,但仍然能够为后续相关系统的开发和优化提供一定的经验积累和技术参考。  

世界五百强企业数据分析与可视化系统-视频展示

 https://www.bilibili.com/video/BV1nkYKz9Ek3/?spm_id_from=333.1387.homepage.video_card.click

世界五百强企业数据分析与可视化系统-图片展示

2 大数据毕业设计选题推荐:基于Spark+Django的世界五百强企业数据分析与可视化系统.png

地理分布分析.png

登录.png

企业规模分析.png

首页.png

数据大屏上.png

数据大屏下.png

数据大屏中.png

特殊群体分析.png

五百强企业信息.png

行业分布分析.png

用户.png  

世界五百强企业数据分析与可视化系统-代码展示

from pyspark.sql.functions import col, sum, avg, count, desc, asc, when, isnan, isnull
import pandas as pd
import numpy as np
from django.http import JsonResponse

spark = SparkSession.builder.appName("Fortune500Analysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()

def country_distribution_analysis(request):
    df = spark.read.csv("hdfs://localhost:9000/fortune500/data.csv", header=True, inferSchema=True)
    df.createOrReplaceTempView("fortune500")
    country_stats = spark.sql("SELECT country, COUNT(*) as company_count, SUM(revenue) as total_revenue, SUM(profit) as total_profit, AVG(revenue) as avg_revenue, AVG(profit) as avg_profit FROM fortune500 GROUP BY country ORDER BY company_count DESC")
    country_ranking = country_stats.withColumn("revenue_rank", row_number().over(Window.orderBy(desc("total_revenue")))).withColumn("profit_rank", row_number().over(Window.orderBy(desc("total_profit"))))
    top_countries = country_ranking.filter(col("company_count") >= 5).select("country", "company_count", "total_revenue", "total_profit", "avg_revenue", "avg_profit", "revenue_rank", "profit_rank")
    economic_contribution = top_countries.withColumn("revenue_percentage", (col("total_revenue") / country_stats.agg(sum("total_revenue")).collect()[0][0]) * 100).withColumn("profit_percentage", (col("total_profit") / country_stats.agg(sum("total_profit")).collect()[0][0]) * 100)
    geographic_analysis = spark.sql("SELECT CASE WHEN country IN ('United States', 'Canada') THEN 'North America' WHEN country IN ('China', 'Japan', 'South Korea', 'India', 'Singapore', 'Taiwan') THEN 'Asia' WHEN country IN ('Germany', 'France', 'United Kingdom', 'Italy', 'Spain', 'Netherlands', 'Switzerland') THEN 'Europe' ELSE 'Others' END as continent, COUNT(*) as company_count, SUM(revenue) as continent_revenue, AVG(profit) as avg_profit FROM fortune500 GROUP BY continent ORDER BY company_count DESC")
    china_usa_comparison = spark.sql("SELECT country, COUNT(*) as count, AVG(revenue) as avg_revenue, AVG(profit) as avg_profit, industry, COUNT(*) as industry_count FROM fortune500 WHERE country IN ('China', 'United States') GROUP BY country, industry ORDER BY country, industry_count DESC")
    city_concentration = spark.sql("SELECT city, country, COUNT(*) as company_count, SUM(revenue) as city_total_revenue FROM fortune500 GROUP BY city, country HAVING COUNT(*) >= 2 ORDER BY company_count DESC LIMIT 20")
    result_data = {"country_distribution": [row.asDict() for row in top_countries.collect()], "continent_analysis": [row.asDict() for row in geographic_analysis.collect()], "china_usa_comparison": [row.asDict() for row in china_usa_comparison.collect()], "city_concentration": [row.asDict() for row in city_concentration.collect()]}
    return JsonResponse(result_data, safe=False)

def industry_performance_analysis(request):
    df = spark.read.csv("hdfs://localhost:9000/fortune500/data.csv", header=True, inferSchema=True)
    df.createOrReplaceTempView("fortune500")
    df_cleaned = df.filter(col("profit").isNotNull() & col("revenue").isNotNull() & (col("revenue") > 0))
    industry_distribution = spark.sql("SELECT industry, COUNT(*) as company_count, SUM(revenue) as total_revenue, SUM(profit) as total_profit, AVG(revenue) as avg_revenue, AVG(profit) as avg_profit FROM fortune500 GROUP BY industry ORDER BY company_count DESC")
    profit_margin_analysis = df_cleaned.withColumn("profit_margin", (col("profit") / col("revenue")) * 100).groupBy("industry").agg(avg("profit_margin").alias("avg_profit_margin"), count("*").alias("company_count")).filter(col("company_count") >= 3).orderBy(desc("avg_profit_margin"))
    staff_productivity = df_cleaned.filter(col("staff").isNotNull() & (col("staff") > 0)).withColumn("revenue_per_employee", col("revenue") / col("staff")).withColumn("profit_per_employee", col("profit") / col("staff")).groupBy("industry").agg(avg("revenue_per_employee").alias("avg_revenue_per_employee"), avg("profit_per_employee").alias("avg_profit_per_employee"), count("*").alias("company_count")).filter(col("company_count") >= 3).orderBy(desc("avg_revenue_per_employee"))
    tech_vs_traditional = spark.sql("SELECT CASE WHEN industry LIKE '%Technology%' OR industry LIKE '%Internet%' OR industry LIKE '%Software%' OR industry LIKE '%Telecommunications%' THEN 'Technology' ELSE 'Traditional' END as industry_category, COUNT(*) as company_count, AVG(revenue) as avg_revenue, AVG(profit) as avg_profit, SUM(revenue) as total_revenue, SUM(profit) as total_profit FROM fortune500 GROUP BY industry_category")
    energy_analysis = spark.sql("SELECT country, COUNT(*) as energy_company_count, AVG(profit) as avg_profit, SUM(revenue) as total_revenue FROM fortune500 WHERE industry LIKE '%Energy%' OR industry LIKE '%Oil%' OR industry LIKE '%Gas%' OR industry LIKE '%Petroleum%' GROUP BY country HAVING COUNT(*) >= 2 ORDER BY energy_company_count DESC")
    industry_growth_potential = df_cleaned.groupBy("industry").agg(avg("profit").alias("avg_profit"), avg("revenue").alias("avg_revenue"), count("*").alias("company_count")).withColumn("profit_revenue_ratio", col("avg_profit") / col("avg_revenue")).filter(col("company_count") >= 5).orderBy(desc("profit_revenue_ratio"))
    result_data = {"industry_distribution": [row.asDict() for row in industry_distribution.collect()], "profit_margin_ranking": [row.asDict() for row in profit_margin_analysis.collect()], "staff_productivity": [row.asDict() for row in staff_productivity.collect()], "tech_traditional_comparison": [row.asDict() for row in tech_vs_traditional.collect()], "energy_regional_analysis": [row.asDict() for row in energy_analysis.collect()], "growth_potential": [row.asDict() for row in industry_growth_potential.collect()]}
    return JsonResponse(result_data, safe=False)

def enterprise_scale_efficiency_analysis(request):
    df = spark.read.csv("hdfs://localhost:9000/fortune500/data.csv", header=True, inferSchema=True)
    df.createOrReplaceTempView("fortune500")
    df_filtered = df.filter(col("staff").isNotNull() & col("profit").isNotNull() & col("revenue").isNotNull() & (col("staff") > 0) & (col("revenue") > 0))
    scale_profit_correlation = df_filtered.select("staff", "profit", "revenue").toPandas()
    correlation_matrix = scale_profit_correlation.corr()
    staff_profit_corr = float(correlation_matrix.loc['staff', 'profit'])
    staff_revenue_corr = float(correlation_matrix.loc['staff', 'revenue'])
    revenue_distribution = spark.sql("SELECT CASE WHEN revenue >= 100000 THEN 'Super Large (>100B)' WHEN revenue >= 50000 THEN 'Large (50B-100B)' WHEN revenue >= 25000 THEN 'Medium Large (25B-50B)' ELSE 'Medium (< 25B)' END as revenue_scale, COUNT(*) as company_count, AVG(profit) as avg_profit, SUM(profit) as total_profit FROM fortune500 GROUP BY revenue_scale ORDER BY avg_profit DESC")
    ranking_tier_analysis = spark.sql("SELECT CASE WHEN rank <= 100 THEN 'Top 100' WHEN rank <= 200 THEN 'Top 101-200' WHEN rank <= 300 THEN 'Top 201-300' WHEN rank <= 400 THEN 'Top 301-400' ELSE 'Top 401-500' END as rank_tier, COUNT(*) as company_count, AVG(profit) as avg_profit, AVG(revenue) as avg_revenue, AVG(staff) as avg_staff FROM fortune500 GROUP BY rank_tier ORDER BY avg_profit DESC")
    efficiency_ranking = df_filtered.withColumn("revenue_per_employee", col("revenue") / col("staff")).withColumn("profit_per_employee", col("profit") / col("staff")).select("company", "country", "industry", "revenue_per_employee", "profit_per_employee", "staff", "revenue", "profit").orderBy(desc("revenue_per_employee"))
    top_efficient_companies = efficiency_ranking.limit(50)
    size_efficiency_analysis = df_filtered.withColumn("staff_scale", when(col("staff") >= 500000, "Mega (>500k)").when(col("staff") >= 200000, "Large (200k-500k)").when(col("staff") >= 100000, "Medium (100k-200k)").otherwise("Small (<100k)")).withColumn("profit_margin", (col("profit") / col("revenue")) * 100).groupBy("staff_scale").agg(avg("profit_margin").alias("avg_profit_margin"), count("*").alias("company_count"), avg("revenue").alias("avg_revenue")).orderBy(desc("avg_profit_margin"))
    scale_performance_insights = spark.sql("SELECT industry, COUNT(*) as company_count, AVG(staff) as avg_staff, AVG(revenue/staff) as avg_efficiency, CORR(staff, profit) as staff_profit_correlation FROM fortune500 WHERE staff IS NOT NULL AND profit IS NOT NULL GROUP BY industry HAVING COUNT(*) >= 5 ORDER BY avg_efficiency DESC")
    result_data = {"correlation_analysis": {"staff_profit_correlation": staff_profit_corr, "staff_revenue_correlation": staff_revenue_corr}, "revenue_distribution": [row.asDict() for row in revenue_distribution.collect()], "ranking_tier_performance": [row.asDict() for row in ranking_tier_analysis.collect()], "efficiency_leaders": [row.asDict() for row in top_efficient_companies.collect()], "size_efficiency_relationship": [row.asDict() for row in size_efficiency_analysis.collect()], "industry_scale_insights": [row.asDict() for row in scale_performance_insights.collect()]}
    return JsonResponse(result_data, safe=False)

世界五百强企业数据分析与可视化系统-结语

大数据毕业设计选题推荐:基于Spark+Django的世界五百强企业数据分析与可视化系统 毕业设计/选题推荐/深度学习/数据分析/机器学习/数据挖掘/随机森林

如果遇到具体的技术问题或计算机毕设方面需求,你也可以问我,我会尽力帮你分析和解决问题所在,支持我记得一键三连,再点个关注,学习不迷路!

  ⚡⚡获取源码主页-->:计算机毕设指导师

⚡⚡如果遇到具体的技术问题或计算机毕设方面需求!你也可以在个人主页上↑↑联系我~~