大数据毕业设计选题推荐:基于大数据的婚姻状况数据分析与可视化系统Hadoop+Spark技术详解 毕业设计/选题推荐/深度学习/数据分析/机器学习/数据挖掘

82 阅读9分钟

计算机毕设指导师****

⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。

大家都可点赞、收藏、关注、有问题都可留言评论交流

实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流!

⚡⚡如果遇到具体的技术问题或计算机毕设方面需求!你也可以在个人主页上↑↑联系我~~

⚡⚡获取源码主页-->:计算机毕设指导师

婚姻状况数据分析与可视化系统- 简介****

 基于Hadoop+Django的我国婚姻状况数据分析与可视化系统是一个集大数据处理、统计分析和可视化展示于一体的综合性平台。该系统采用Hadoop作为分布式存储和计算框架,结合Spark进行高效的数据处理和分析,通过Django框架构建后端服务,前端使用Vue+ElementUI+Echarts实现交互式数据可视化。系统围绕我国2000年至2020年的婚姻状况数据,构建了四个核心分析维度:婚姻状况总体结构与变迁分析、基于年龄维度的婚姻状况深度剖析、基于性别维度的婚姻状况差异化研究,以及婚姻模式变迁的深度挖掘。通过运用Spark SQL进行复杂查询、Pandas和NumPy进行数据处理、Apriori算法进行关联规则挖掘、K-Means算法进行聚类分析,系统能够从多个角度全面解析我国婚姻状况的演变趋势,生成直观的可视化图表,为相关研究提供有力的数据支撑和分析工具。

婚姻状况数据分析与可视化系统-技术****

开发语言:java或Python

数据库:MySQL

系统架构:B/S

前端:Vue+ElementUI+HTML+CSS+JavaScript+jQuery+Echarts

大数据框架:Hadoop+Spark(本次没用Hive,支持定制)

后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)

婚姻状况数据分析与可视化系统- 背景****

随着社会经济的快速发展和人们价值观念的转变,我国婚姻家庭结构正在经历深刻的变化。近年来,晚婚、不婚、离婚率上升等现象引起了社会各界的广泛关注,这些变化不仅反映了个体生活方式的选择,更体现了整个社会文化和经济发展的深层次变迁。传统的婚姻统计分析方法往往局限于简单的统计汇总,难以深入挖掘海量人口普查数据背后的复杂关系和潜在规律。与此同时,大数据技术的兴起为处理和分析大规模人口统计数据提供了新的技术手段,Hadoop生态系统以其强大的分布式处理能力,能够有效应对传统数据处理方式在面对海量数据时的性能瓶颈。在这样的背景下,运用现代大数据技术对我国婚姻状况进行深度分析,不仅能够更准确地把握婚姻变迁的整体趋势,还能从多维度揭示不同群体的婚姻行为特征,为理解当代中国社会的婚姻现状提供更加科学和全面的视角。

本课题的研究具有重要的理论价值和实践意义,虽然作为毕业设计项目,其影响范围相对有限,但仍能在多个层面产生积极作用。从学术角度来看,该系统为婚姻社会学和人口统计学的研究提供了一个实用的数据分析工具,能够帮助研究者更便捷地进行婚姻状况的定量分析,发现传统方法难以察觉的数据模式和趋势。从技术层面而言,项目成功整合了Hadoop、Spark、Django等多项技术,为大数据技术在人文社会科学领域的应用提供了有益的探索案例,展示了大数据技术处理社会统计数据的可行性和有效性。从应用价值来说,系统生成的分析结果和可视化图表可以为相关部门制定人口政策、婚姻家庭服务政策提供一定的数据参考,虽然影响力有限,但确实能够为政策制定者提供更加直观和科学的数据支撑。从教育意义来看,该项目为计算机专业学生提供了一个将大数据技术应用于实际社会问题的学习案例,有助于培养学生运用技术解决现实问题的能力,提升其对大数据技术实际应用价值的理解。  

婚姻状况数据分析与可视化系统-视频展示****

https://www.bilibili.com/video/BV1bNahzAEw3/?spm_id_from=333.1387.homepage.video_card.click  

婚姻状况数据分析与可视化系统-图片展示****

2 大数据毕业设计选题推荐:基于大数据的婚姻状况数据分析与可视化系统Hadoop+Spark技术详解.png

QQ20250905-160920.png

QQ20250905-162334.png

婚姻模式变迁分析.png

婚姻年龄特征分析.png

婚姻数据挖掘分析.png

婚姻性别差异分析.png

婚姻状况信息管理.png

婚姻状况总体分析.png

数据大屏上.png

数据大屏下.png  

婚姻状况数据分析与可视化系统-代码展示****

from pyspark.sql.functions import *
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.clustering import KMeans
from pyspark.ml.fpm import FPGrowth
import pandas as pd
import numpy as np
from django.http import JsonResponse
from django.views.decorators.http import require_http_methods
import json

spark = SparkSession.builder.appName("MarriageDataAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()

@require_http_methods(["GET"])
def marriage_trend_analysis(request):
    year = request.GET.get('year', '2020')
    df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/marriage_data/marriage_census_data.csv")
    yearly_data = df.filter(col("record_year") == int(year))
    total_population = yearly_data.agg(sum("pop").alias("total_pop")).collect()[0]["total_pop"]
    marriage_distribution = yearly_data.groupBy("state").agg(sum("pop").alias("population")).withColumn("percentage", round(col("population") / total_population * 100, 2))
    trend_data = df.groupBy("record_year", "state").agg(sum("pop").alias("population")).withColumn("year_total", sum("population").over(Window.partitionBy("record_year"))).withColumn("percentage", round(col("population") / col("year_total") * 100, 2))
    trend_by_year = trend_data.groupBy("record_year").pivot("state").agg(first("percentage")).orderBy("record_year")
    marriage_rate_data = df.filter(col("state").isin(["有配偶", "未婚"])).groupBy("record_year").agg(sum("pop").alias("total_marriageable"))
    married_data = df.filter(col("state") == "有配偶").groupBy("record_year").agg(sum("pop").alias("married_pop"))
    marriage_rates = marriage_rate_data.join(married_data, "record_year").withColumn("marriage_rate", round(col("married_pop") / col("total_marriageable") * 100, 2)).orderBy("record_year")
    gender_comparison = yearly_data.groupBy("state", "gender").agg(sum("pop").alias("population")).withColumn("state_total", sum("population").over(Window.partitionBy("state"))).withColumn("gender_ratio", round(col("population") / col("state_total") * 100, 2))
    male_female_ratio = yearly_data.filter(col("state") == "未婚").groupBy("gender").agg(sum("pop").alias("unmarried_pop"))
    male_unmarried = male_female_ratio.filter(col("gender") == "男").select("unmarried_pop").collect()[0]["unmarried_pop"]
    female_unmarried = male_female_ratio.filter(col("gender") == "女").select("unmarried_pop").collect()[0]["unmarried_pop"]
    ratio = round(male_unmarried / female_unmarried, 2) if female_unmarried > 0 else 0
    result_data = {
        'current_year_distribution': [{'state': row['state'], 'population': row['population'], 'percentage': row['percentage']} for row in marriage_distribution.collect()],
        'historical_trend': [{'year': row['record_year'], 'unmarried': row.get('未婚', 0), 'married': row.get('有配偶', 0), 'divorced': row.get('离婚', 0), 'widowed': row.get('丧偶', 0)} for row in trend_by_year.collect()],
        'marriage_rates': [{'year': row['record_year'], 'rate': row['marriage_rate']} for row in marriage_rates.collect()],
        'gender_analysis': [{'state': row['state'], 'gender': row['gender'], 'population': row['population'], 'ratio': row['gender_ratio']} for row in gender_comparison.collect()],
        'male_female_ratio': ratio
    }
    return JsonResponse(result_data, safe=False)

@require_http_methods(["GET"])
def age_dimension_analysis(request):
    analysis_type = request.GET.get('type', 'age_structure')
    year = request.GET.get('year', '2020')
    df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/marriage_data/marriage_census_data.csv")
    df_with_age_group = df.withColumn("age_group", when(col("age") < 25, "青年(15-24)").when(col("age") < 45, "中年(25-44)").when(col("age") < 65, "中老年(45-64)").otherwise("老年(65+)"))
    if analysis_type == 'age_structure':
        age_marriage_data = df_with_age_group.filter(col("record_year") == int(year)).groupBy("age_group", "state").agg(sum("pop").alias("population")).withColumn("group_total", sum("population").over(Window.partitionBy("age_group"))).withColumn("percentage", round(col("population") / col("group_total") * 100, 2))
        result = [{'age_group': row['age_group'], 'state': row['state'], 'population': row['population'], 'percentage': row['percentage']} for row in age_marriage_data.collect()]
    elif analysis_type == 'marriage_age_trend':
        marriage_age_data = df.filter((col("state") == "有配偶") & (col("age").between(20, 40))).groupBy("record_year").agg(avg("age").alias("avg_marriage_age")).orderBy("record_year")
        result = [{'year': row['record_year'], 'avg_age': round(row['avg_marriage_age'], 2)} for row in marriage_age_data.collect()]
    elif analysis_type == 'divorce_age_analysis':
        divorce_by_age = df_with_age_group.filter(col("state") == "离婚").groupBy("record_year", "age_group").agg(sum("pop").alias("divorced_pop"))
        total_by_age = df_with_age_group.groupBy("record_year", "age_group").agg(sum("pop").alias("total_pop"))
        divorce_rates = divorce_by_age.join(total_by_age, ["record_year", "age_group"]).withColumn("divorce_rate", round(col("divorced_pop") / col("total_pop") * 100, 3)).orderBy("record_year", "age_group")
        result = [{'year': row['record_year'], 'age_group': row['age_group'], 'divorce_rate': row['divorce_rate']} for row in divorce_rates.collect()]
    elif analysis_type == 'youth_marriage_delay':
        youth_data = df.filter((col("age").between(15, 24)) & (col("state") == "未婚")).groupBy("record_year").agg(sum("pop").alias("unmarried_youth"))
        youth_total = df.filter(col("age").between(15, 24)).groupBy("record_year").agg(sum("pop").alias("total_youth"))
        youth_unmarried_rate = youth_data.join(youth_total, "record_year").withColumn("unmarried_rate", round(col("unmarried_youth") / col("total_youth") * 100, 2)).orderBy("record_year")
        result = [{'year': row['record_year'], 'unmarried_rate': row['unmarried_rate']} for row in youth_unmarried_rate.collect()]
    else:
        elderly_data = df.filter(col("age") >= 65).groupBy("record_year", "state").agg(sum("pop").alias("population")).withColumn("year_total", sum("population").over(Window.partitionBy("record_year"))).withColumn("percentage", round(col("population") / col("year_total") * 100, 2))
        result = [{'year': row['record_year'], 'state': row['state'], 'percentage': row['percentage']} for row in elderly_data.collect()]
    return JsonResponse({'data': result}, safe=False)

@require_http_methods(["GET"])
def marriage_pattern_mining(request):
    algorithm = request.GET.get('algorithm', 'clustering')
    df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/marriage_data/marriage_census_data.csv")
    df_with_age_group = df.withColumn("age_group", when(col("age") < 25, "青年").when(col("age") < 45, "中年").when(col("age") < 65, "中老年").otherwise("老年"))
    if algorithm == 'clustering':
        feature_data = df_with_age_group.groupBy("record_year", "gender", "age_group").pivot("state").agg(sum("pop")).fillna(0)
        total_cols = [col_name for col_name in feature_data.columns if col_name not in ["record_year", "gender", "age_group"]]
        for col_name in total_cols:
            feature_data = feature_data.withColumn(f"{col_name}_total", sum(col_name).over(Window.partitionBy("record_year", "gender", "age_group")))
            feature_data = feature_data.withColumn(f"{col_name}_pct", col(col_name) / col(f"{col_name}_total") * 100)
        pct_cols = [f"{col_name}_pct" for col_name in total_cols]
        assembler = VectorAssembler(inputCols=pct_cols, outputCol="features")
        feature_vector_data = assembler.transform(feature_data).select("record_year", "gender", "age_group", "features")
        kmeans = KMeans(k=4, featuresCol="features", predictionCol="cluster")
        model = kmeans.fit(feature_vector_data)
        clustered_data = model.transform(feature_vector_data)
        cluster_summary = clustered_data.groupBy("cluster").agg(collect_list(concat_ws("-", col("record_year"), col("gender"), col("age_group"))).alias("groups"), count("*").alias("group_count"))
        result = [{'cluster_id': row['cluster'], 'groups': row['groups'], 'count': row['group_count']} for row in cluster_summary.collect()]
    else:
        transaction_data = df_with_age_group.select("age_group", "state").rdd.map(lambda row: (row['age_group'], [row['state']])).reduceByKey(lambda a, b: a + b).map(lambda x: (x[0], x[1]))
        transactions_df = spark.createDataFrame(transaction_data.map(lambda x: (x[1],)), ["items"])
        fpgrowth = FPGrowth(itemsCol="items", minSupport=0.1, minConfidence=0.3)
        model = fpgrowth.fit(transactions_df)
        frequent_itemsets = model.freqItemsets.collect()
        association_rules = model.associationRules.collect()
        result = {
            'frequent_patterns': [{'items': row['items'], 'frequency': row['freq']} for row in frequent_itemsets],
            'association_rules': [{'antecedent': row['antecedent'], 'consequent': row['consequent'], 'confidence': round(row['confidence'], 3)} for row in association_rules]
        }
    return JsonResponse({'data': result}, safe=False)

 

婚姻状况数据分析与可视化系统-结语****

为什么导师最爱大数据毕设?基于Hadoop的婚姻状况分析系统告诉你答案 毕业设计/选题推荐/深度学习/数据分析/机器学习/数据挖掘/随机森林/数据可视化

如果你觉得内容不错,欢迎一键三连(点赞、收藏、关注)支持一下!也欢迎在评论区或在博客主页上私信联系留下你的想法或提出宝贵意见,期待与大家交流探讨!谢谢!

⚡⚡获取源码主页:计算机毕设指导师

⚡⚡如果遇到具体的技术问题或计算机毕设封面需求!你也可以在个人主页上↑↑联系我~~