普通java开发如何转型大模型方向?不抛弃!重结合才是王道

102 阅读5分钟

说真的,这两年看着身边一个个搞Java的哥们开始卷大模型,挺唏嘘的。大家最开始都是写接口、搞Spring Boot、连数据库、配Redis,稳稳当当过日子。

结果一个ChatGPT火了之后,整条后端线上的人都开始有点慌了,谁还不是在想:“我是不是要学点AI,不然这饭碗还能保多久?” 我先给出最直接的答案,一定要把你们现有的java技术能力和大模型结合起来,而不是抛弃你们现有的java技术,而是要结合优势,后面的趋势一定是AI应用落地

如果对大模型完全空白,想转但不知道从哪下手——这事儿我太理解了。

对于后端工程师来说,先保证自己有能力让大模型相关的项目落地。然后逐渐地补充算法的基础知识,因为你们已经有了工程技术背景,所以需要的做的是如何让既有的技术经验赋能新的技术。

我身边就有几个朋友,从普通Java后端,一步步搞成了现在的“AI工程师”,虽然不是研究院里的那种大神,但起码现在接的项目已经是“Prompt微调+API整合+大模型微服务框架落地”了,赚得也不少。

看看现在的招聘,用java做AI服务端的研发是一个很不错的选择,其实你发现没有,从云计算、大数据、到今天AI,都说Java已死,但是最后大数据、AI这些还是得老老实实接入服务端的接口。

他们的路径很接地气,也适合大多数人。 首先,别一上来就想着看深度学习,Transformer论文精读这种硬核的东西。就像学Java的时候,你不会先学JVM源码,而是搭个Spring Boot Hello World再说。

大模型这边也一样,建议你先搞清楚这几个问题: 大模型到底是干嘛的?ChatGPT、Claude 这些模型能做什么?为什么公司要用它们?你作为后端开发,怎么参与它们的应用? 这一步,建议你就老老实实看一些产品侧的落地案例,比如大模型在客服、智能文档生成、代码补全、金融投研分析中的用法。你可以去试试、GitHub Copilot、Kimi、ChatGPT这些工具,理解下大模型到底“智能”在哪。

然后,开始学点实际技能。别怕AI三个字,其实现在大多数大模型应用,后端开发背景的人非常有优势。你熟悉接口?你能写服务?你知道微服务怎么拆?你明白怎么做权限控制、数据缓存? 这些全都能直接迁移到“Agent编排”、“模型服务封装”这些任务里。

你可以从以下几块着手:

1.学会用OpenAI、阿里的通义千问、百度的文心一言这些API;

2.学会用LangChain或者LlamaIndex这样的框架进行简单的“RAG”开发;

3.搭建一个自己的私有化大模型微服务,比如部署一个ChatGLM,做个“公司文档搜索助手”;

4.学Prompt工程技巧,懂得“怎么问”和“怎么改回答”。 这个阶段,其实你只需要有点Python基础 + API调用能力就够了,不涉及复杂的数学和模型训练,跟你写Java接三方API是一个思路。

看到这里你可能会想:“这些东西看着好像也不难,那我怎么系统化地学?”

我使用PlantUML绘制了一份技能树脑图,把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

这份学习路线大纲已经导出整理打包了,在 >gitcode ←←←←←←

L1阶段:启航篇丨极速破界AI新时代

L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。

L2阶段:攻坚篇丨RAG开发实战工坊

L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3阶段:跃迁篇丨Agent智能体架构设计

L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。

L4阶段:精进篇丨模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

L5阶段:专题集丨特训篇 【录播课】

总结:学习路径建议从 理论 -> 编程 -> 算法 -> 工程 逐步深入。在实践中,这些板块的能力是相辅相成、缺一不可的。对于大模型时代,Transformer的理解和模型部署优化的工程能力尤为关键。

这份学习路线大纲已经导出整理打包了,在 >gitcode ←←←←←←