✍✍计算机毕设指导师**
⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡有什么问题可以在主页上或文末下联系咨询博客~~ ⚡⚡Java、Python、小程序、大数据实战项目集](blog.csdn.net/2301_803956…) ⚡⚡获取源码主页-->:计算机毕设指导师
信用卡交易诈骗数据分析系统-简介
基于Spark+Django的信用卡交易诈骗数据分析与可视化系统是一个集成大数据处理、机器学习分析和Web可视化展示于一体的综合性应用平台。该系统采用Hadoop+Spark作为大数据处理框架,利用HDFS进行海量交易数据的分布式存储,通过Spark SQL和Pandas、NumPy等数据科学库对信用卡交易数据进行深度挖掘和分析。系统后端基于Django框架构建,前端采用Vue+ElementUI+Echarts技术栈实现交互式数据可视化界面。在数据分析层面,系统从欺诈交易总体态势、交易属性关联性、时空特征、金额特征以及基于K-Means聚类的行为分群等五个维度进行全方位分析,能够识别不同交易渠道、支付方式、地理位置、金额比率等特征与欺诈行为的关联关系。通过多维度交叉分析和机器学习算法,系统能够发现潜在的欺诈模式,为金融风险防控提供数据支撑,同时通过直观的图表和统计报表帮助用户理解复杂的数据分析结果。
信用卡交易诈骗数据分析系统-技术
大数据框架:Hadoop+Spark(本次没用Hive,支持定制) 开发语言:Python+Java(两个版本都支持) 后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持) 前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery 数据库:MySQL
信用卡交易诈骗数据分析系统-背景
随着移动支付和电子商务的快速发展,信用卡作为重要的支付工具在日常生活中的使用频率不断提升,交易场景也日趋多样化。然而,这种便利性也带来了新的安全隐患,信用卡诈骗案件呈现出手段多样化、技术复杂化的特点。传统的基于规则的风控系统在面对海量交易数据时存在处理效率低、误报率高等问题,难以及时发现复杂的欺诈模式。现代金融机构每日产生的交易数据量达到TB级别,这些数据中隐藏着大量有价值的行为模式和异常信号,但传统的数据处理方式无法充分挖掘这些信息的潜在价值。大数据技术的成熟为解决这一问题提供了新的思路,通过分布式计算框架能够高效处理海量数据,机器学习算法能够自动发现数据中的隐藏模式,可视化技术则能够将复杂的分析结果以直观的方式呈现给决策者。
本课题的研究具有较为重要的理论价值和实践意义。从理论角度来看,通过将大数据技术与金融风控领域相结合,探索了Spark分布式计算框架在信用卡诈骗检测中的应用方法,丰富了大数据技术在金融安全领域的理论基础。系统采用多维度分析模型,结合机器学习聚类算法,为信用卡诈骗行为的识别提供了一套相对完整的技术方案。从实践角度来看,该系统能够帮助金融机构更好地理解交易数据中的风险特征,通过对交易渠道、支付方式、地理位置、金额特征等多个维度的综合分析,提升欺诈交易的识别准确率。可视化分析界面使得复杂的数据分析结果变得更加直观易懂,有助于风控人员快速把握风险态势并制定相应的防控策略。虽然作为毕业设计项目,其规模和复杂度相对有限,但仍能为相关领域的研究和实践提供一定的参考价值,同时也体现了大数据技术在解决实际业务问题方面的应用潜力。
信用卡交易诈骗数据分析系统-视频展示
信用卡交易诈骗数据分析系统-图片展示
信用卡交易诈骗数据分析系统-代码展示
from pyspark.sql.functions import *
from pyspark.sql.types import *
from django.http import JsonResponse
from django.views import View
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
import json
spark = SparkSession.builder.appName("CreditCardFraudAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()
class FraudAnalysisView(View):
def get_transaction_channel_fraud_analysis(self, request):
df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/fraud_data/transactions.csv")
df.createOrReplaceTempView("transactions")
online_fraud_stats = spark.sql("""
SELECT
online_order,
COUNT(*) as total_transactions,
SUM(CASE WHEN fraud = 1 THEN 1 ELSE 0 END) as fraud_transactions,
ROUND(SUM(CASE WHEN fraud = 1 THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 4) as fraud_rate
FROM transactions
GROUP BY online_order
ORDER BY online_order
""").collect()
channel_analysis = []
for row in online_fraud_stats:
channel_type = "线上交易" if row.online_order == 1 else "线下交易"
channel_analysis.append({
'channel': channel_type,
'total_count': row.total_transactions,
'fraud_count': row.fraud_transactions,
'fraud_rate': row.fraud_rate,
'normal_count': row.total_transactions - row.fraud_transactions
})
payment_method_stats = spark.sql("""
SELECT
used_chip,
used_pin_number,
COUNT(*) as total_count,
SUM(CASE WHEN fraud = 1 THEN 1 ELSE 0 END) as fraud_count,
ROUND(SUM(CASE WHEN fraud = 1 THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 4) as fraud_rate
FROM transactions
GROUP BY used_chip, used_pin_number
ORDER BY fraud_rate DESC
""").collect()
payment_analysis = []
for row in payment_method_stats:
chip_status = "使用芯片" if row.used_chip == 1 else "未使用芯片"
pin_status = "使用PIN码" if row.used_pin_number == 1 else "未使用PIN码"
payment_method = f"{chip_status}+{pin_status}"
payment_analysis.append({
'payment_method': payment_method,
'total_count': row.total_count,
'fraud_count': row.fraud_count,
'fraud_rate': row.fraud_rate
})
return JsonResponse({
'channel_analysis': channel_analysis,
'payment_analysis': payment_analysis,
'status': 'success'
})
def get_spatial_temporal_fraud_analysis(self, request):
df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/fraud_data/transactions.csv")
df.createOrReplaceTempView("transactions")
distance_percentiles = spark.sql("""
SELECT
percentile_approx(distance_from_home, 0.25) as q25_home,
percentile_approx(distance_from_home, 0.50) as q50_home,
percentile_approx(distance_from_home, 0.75) as q75_home,
percentile_approx(distance_from_last_transaction, 0.25) as q25_last,
percentile_approx(distance_from_last_transaction, 0.50) as q50_last,
percentile_approx(distance_from_last_transaction, 0.75) as q75_last
FROM transactions
""").collect()[0]
home_distance_analysis = spark.sql(f"""
SELECT
CASE
WHEN distance_from_home <= {distance_percentiles.q25_home} THEN '近距离(≤{distance_percentiles.q25_home:.1f}km)'
WHEN distance_from_home <= {distance_percentiles.q50_home} THEN '中等距离({distance_percentiles.q25_home:.1f}-{distance_percentiles.q50_home:.1f}km)'
WHEN distance_from_home <= {distance_percentiles.q75_home} THEN '远距离({distance_percentiles.q50_home:.1f}-{distance_percentiles.q75_home:.1f}km)'
ELSE '超远距离(>{distance_percentiles.q75_home:.1f}km)'
END as distance_range,
COUNT(*) as total_count,
SUM(CASE WHEN fraud = 1 THEN 1 ELSE 0 END) as fraud_count,
ROUND(SUM(CASE WHEN fraud = 1 THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 4) as fraud_rate,
ROUND(AVG(distance_from_home), 2) as avg_distance
FROM transactions
GROUP BY 1
ORDER BY avg_distance
""").collect()
last_transaction_analysis = spark.sql(f"""
SELECT
CASE
WHEN distance_from_last_transaction <= {distance_percentiles.q25_last} THEN '位移极小(≤{distance_percentiles.q25_last:.1f}km)'
WHEN distance_from_last_transaction <= {distance_percentiles.q50_last} THEN '位移较小({distance_percentiles.q25_last:.1f}-{distance_percentiles.q50_last:.1f}km)'
WHEN distance_from_last_transaction <= {distance_percentiles.q75_last} THEN '位移较大({distance_percentiles.q50_last:.1f}-{distance_percentiles.q75_last:.1f}km)'
ELSE '位移极大(>{distance_percentiles.q75_last:.1f}km)'
END as movement_range,
COUNT(*) as total_count,
SUM(CASE WHEN fraud = 1 THEN 1 ELSE 0 END) as fraud_count,
ROUND(SUM(CASE WHEN fraud = 1 THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 4) as fraud_rate
FROM transactions
GROUP BY 1
ORDER BY fraud_rate DESC
""").collect()
spatial_stats = []
for row in home_distance_analysis:
spatial_stats.append({
'distance_range': row.distance_range,
'total_count': row.total_count,
'fraud_count': row.fraud_count,
'fraud_rate': row.fraud_rate,
'avg_distance': row.avg_distance
})
movement_stats = []
for row in last_transaction_analysis:
movement_stats.append({
'movement_range': row.movement_range,
'total_count': row.total_count,
'fraud_count': row.fraud_count,
'fraud_rate': row.fraud_rate
})
return JsonResponse({
'spatial_analysis': spatial_stats,
'movement_analysis': movement_stats,
'status': 'success'
})
def get_kmeans_cluster_fraud_analysis(self, request):
df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/fraud_data/transactions.csv")
df_pandas = df.select("distance_from_home", "distance_from_last_transaction", "ratio_to_median_purchase_price", "fraud", "online_order", "used_chip", "used_pin_number").toPandas()
feature_columns = ['distance_from_home', 'distance_from_last_transaction', 'ratio_to_median_purchase_price']
X = df_pandas[feature_columns].values
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
kmeans = KMeans(n_clusters=4, random_state=42, n_init=10)
cluster_labels = kmeans.fit_predict(X_scaled)
df_pandas['cluster_id'] = cluster_labels
cluster_analysis_results = []
for cluster_id in range(4):
cluster_data = df_pandas[df_pandas['cluster_id'] == cluster_id]
total_count = len(cluster_data)
fraud_count = len(cluster_data[cluster_data['fraud'] == 1])
fraud_rate = (fraud_count / total_count * 100) if total_count > 0 else 0
avg_home_distance = cluster_data['distance_from_home'].mean()
avg_last_distance = cluster_data['distance_from_last_transaction'].mean()
avg_amount_ratio = cluster_data['ratio_to_median_purchase_price'].mean()
online_rate = (cluster_data['online_order'].sum() / total_count * 100) if total_count > 0 else 0
chip_usage_rate = (cluster_data['used_chip'].sum() / total_count * 100) if total_count > 0 else 0
pin_usage_rate = (cluster_data['used_pin_number'].sum() / total_count * 100) if total_count > 0 else 0
cluster_profile = ""
if avg_home_distance < 50 and avg_amount_ratio < 1.5:
cluster_profile = "本地小额交易型"
elif avg_home_distance > 100 and avg_amount_ratio > 2.0:
cluster_profile = "异地大额交易型"
elif avg_last_distance > 80:
cluster_profile = "高移动频繁交易型"
else:
cluster_profile = "常规交易行为型"
cluster_analysis_results.append({
'cluster_id': int(cluster_id),
'cluster_profile': cluster_profile,
'total_count': int(total_count),
'fraud_count': int(fraud_count),
'fraud_rate': round(fraud_rate, 4),
'avg_home_distance': round(avg_home_distance, 2),
'avg_last_distance': round(avg_last_distance, 2),
'avg_amount_ratio': round(avg_amount_ratio, 2),
'online_transaction_rate': round(online_rate, 2),
'chip_usage_rate': round(chip_usage_rate, 2),
'pin_usage_rate': round(pin_usage_rate, 2)
})
cluster_analysis_results.sort(key=lambda x: x['fraud_rate'], reverse=True)
return JsonResponse({
'cluster_analysis': cluster_analysis_results,
'total_clusters': 4,
'feature_importance': {
'distance_from_home': '离家距离特征权重',
'distance_from_last_transaction': '上次交易距离特征权重',
'ratio_to_median_purchase_price': '金额比率特征权重'
},
'status': 'success'
})
信用卡交易诈骗数据分析系统-结语
大学导师力推:基于Spark+Django的信用卡交易诈骗数据分析系统毕设首选 毕业设计/选题推荐/深度学习/数据分析/数据挖掘/机器学习/随机森林/数据可视化
如果你觉得内容不错,欢迎一键三连(点赞、收藏、关注)支持一下!如果遇到技术或其它问题,欢迎在评论区留下你的想法或提出宝贵意见,期待与大家交流探讨!感谢支持!
⚡⚡获取源码主页-->:计算机毕设指导师 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡如果遇到具体的技术问题或其他需求,你也可以问我,我会尽力帮你分析和解决问题所在,支持我记得一键三连,再点个关注,学习不迷路!~~