✍✍计算机毕设指导师**
⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡有什么问题可以在主页上或文末下联系咨询博客~~ ⚡⚡Java、Python、小程序、大数据实战项目集](blog.csdn.net/2301_803956…)
电信客服数据处理与分析系统-简介
基于数据挖掘平台的电信客服数据处理与分析系统是一个采用现代大数据技术栈构建的智能化数据分析平台,该系统以Hadoop分布式文件系统和Spark大数据处理引擎为核心技术架构,结合Python数据科学库和SpringBoot后端框架,实现了对电信客服海量数据的高效处理与深度挖掘。系统采用Vue+ElementUI构建现代化前端界面,通过Echarts实现数据可视化展示,后端使用MySQL数据库存储结构化数据,并通过Pandas和NumPy进行数据预处理和统计分析。在功能层面,系统从客户流失分析、消费行为分析、服务使用特征分析和客户特征分析四个核心维度展开,深入挖掘电信客户的行为模式和价值特征,包括基础流失率统计、不同合约期流失对比、服务组合与流失关系的聚类分析、客户在网时长分布分析、消费水平分位数分析、支付方式偏好统计、增值服务关联规则挖掘、高价值客户RFM模型分析等多项专业分析功能,通过Spark SQL进行大规模数据查询和HDFS进行数据存储管理,为电信企业提供客户流失预警、服务优化建议、精准营销策略制定和客户价值评估等决策支持,充分体现了大数据技术在电信行业客户关系管理中的实际应用价值。
电信客服数据处理与分析系统-技术
大数据框架:Hadoop+Spark(本次没用Hive,支持定制) 开发语言:Python+Java(两个版本都支持) 后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持) 前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery 数据库:MySQL
电信客服数据处理与分析系统-背景
选题背景
随着电信行业竞争加剧和用户需求多样化发展,电信运营商面临着客户流失率上升、服务同质化严重、客户价值挖掘不足等挑战。传统的客服数据分析方法主要依靠人工统计和简单的数据库查询,处理能力有限且分析深度不够,难以从海量的客户服务数据中发现潜在的业务价值和客户行为规律。电信客服系统每天产生大量的客户交互数据、服务使用记录、消费行为数据和客户属性信息,这些数据蕴含着丰富的商业洞察,但由于缺乏有效的大数据处理技术和数据挖掘方法,大部分有价值的信息都被埋没在数据海洋中。现有的数据分析工具往往局限于基础的统计报表,无法进行深层次的关联分析、聚类分析和预测建模,导致电信企业在制定客户服务策略、优化产品组合、预防客户流失等方面缺乏科学的数据支撑。
选题意义
基于数据挖掘平台的电信客服数据处理与分析系统的开发具有一定的实际应用价值和技术学习意义。从技术角度来看,该系统整合了Hadoop分布式存储、Spark大数据处理、Python数据分析等现代技术栈,为学习和实践大数据技术提供了一个相对完整的应用场景,有助于理解大数据处理的完整流程和关键技术。从业务应用角度考虑,系统通过多维度的数据分析功能,能够为电信企业提供客户行为洞察、服务优化建议和业务决策参考,虽然作为毕业设计项目在规模和复杂度上相对有限,但基本的分析思路和技术方案具备一定的参考价值。该系统的设计和实现过程也体现了将理论知识转化为实际应用的能力培养,通过解决电信行业的实际业务问题,加深了对数据挖掘技术在企业信息化建设中作用的理解,为今后从事相关领域的工作积累了一些基础经验。
电信客服数据处理与分析系统-视频展示
电信客服数据处理与分析系统-图片展示
电信客服数据处理与分析系统-代码展示
from pyspark.sql.functions import *
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.clustering import KMeans
from pyspark.ml.stat import Correlation
import pandas as pd
import numpy as np
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
import json
spark = SparkSession.builder.appName("TelecomCustomerAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()
def customer_churn_analysis(request):
df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/telecom_data/customer_data.csv")
df.createOrReplaceTempView("customer_data")
overall_churn_rate = spark.sql("SELECT COUNT(*) as total_customers, SUM(CASE WHEN Churn = 'Yes' THEN 1 ELSE 0 END) as churned_customers FROM customer_data").collect()[0]
churn_rate = (overall_churn_rate['churned_customers'] / overall_churn_rate['total_customers']) * 100
contract_churn = spark.sql("SELECT Contract, COUNT(*) as total, SUM(CASE WHEN Churn = 'Yes' THEN 1 ELSE 0 END) as churned, (SUM(CASE WHEN Churn = 'Yes' THEN 1 ELSE 0 END) * 100.0 / COUNT(*)) as churn_rate FROM customer_data GROUP BY Contract ORDER BY churn_rate DESC").collect()
tenure_churn = spark.sql("SELECT CASE WHEN tenure <= 12 THEN '0-12月' WHEN tenure <= 24 THEN '13-24月' WHEN tenure <= 36 THEN '25-36月' ELSE '36月以上' END as tenure_group, COUNT(*) as total, SUM(CASE WHEN Churn = 'Yes' THEN 1 ELSE 0 END) as churned, (SUM(CASE WHEN Churn = 'Yes' THEN 1 ELSE 0 END) * 100.0 / COUNT(*)) as churn_rate FROM customer_data GROUP BY tenure_group ORDER BY churn_rate DESC").collect()
service_features = ['InternetService', 'PhoneService', 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMovies']
feature_cols = service_features + ['MonthlyCharges', 'tenure']
assembler = VectorAssembler(inputCols=feature_cols, outputCol="features")
service_df = df.select(*feature_cols).na.drop()
for col_name in service_features:
service_df = service_df.withColumn(col_name, when(col(col_name) == "Yes", 1).when(col(col_name) == "No", 0).otherwise(2))
assembled_df = assembler.transform(service_df)
kmeans = KMeans(k=4, featuresCol="features", predictionCol="cluster")
model = kmeans.fit(assembled_df)
clustered_df = model.transform(assembled_df)
cluster_analysis = clustered_df.groupBy("cluster").agg(avg("MonthlyCharges").alias("avg_charges"), count("*").alias("customer_count")).collect()
result_data = {"overall_churn_rate": round(churn_rate, 2), "contract_analysis": [{"contract": row['Contract'], "total": row['total'], "churned": row['churned'], "churn_rate": round(row['churn_rate'], 2)} for row in contract_churn], "tenure_analysis": [{"tenure_group": row['tenure_group'], "total": row['total'], "churned": row['churned'], "churn_rate": round(row['churn_rate'], 2)} for row in tenure_churn], "service_clusters": [{"cluster": row['cluster'], "avg_charges": round(row['avg_charges'], 2), "customer_count": row['customer_count']} for row in cluster_analysis]}
return JsonResponse(result_data)
def consumption_behavior_analysis(request):
df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/telecom_data/customer_data.csv")
df.createOrReplaceTempView("customer_data")
monthly_charges_stats = spark.sql("SELECT percentile_approx(MonthlyCharges, 0.25) as q1, percentile_approx(MonthlyCharges, 0.5) as median, percentile_approx(MonthlyCharges, 0.75) as q3, AVG(MonthlyCharges) as avg_charges, MIN(MonthlyCharges) as min_charges, MAX(MonthlyCharges) as max_charges FROM customer_data").collect()[0]
consumption_levels = spark.sql("SELECT CASE WHEN MonthlyCharges <= {} THEN '低消费群体' WHEN MonthlyCharges <= {} THEN '中等消费群体' WHEN MonthlyCharges <= {} THEN '中高消费群体' ELSE '高消费群体' END as consumption_level, COUNT(*) as customer_count, AVG(MonthlyCharges) as avg_monthly, AVG(TotalCharges) as avg_total FROM customer_data GROUP BY consumption_level ORDER BY avg_monthly".format(monthly_charges_stats['q1'], monthly_charges_stats['median'], monthly_charges_stats['q3'])).collect()
payment_analysis = spark.sql("SELECT PaymentMethod, COUNT(*) as customer_count, AVG(MonthlyCharges) as avg_charges, (COUNT(*) * 100.0 / (SELECT COUNT(*) FROM customer_data)) as percentage FROM customer_data GROUP BY PaymentMethod ORDER BY customer_count DESC").collect()
paperless_analysis = spark.sql("SELECT PaperlessBilling, COUNT(*) as customer_count, AVG(MonthlyCharges) as avg_charges, (COUNT(*) * 100.0 / (SELECT COUNT(*) FROM customer_data)) as usage_rate FROM customer_data GROUP BY PaperlessBilling").collect()
consumption_stability = spark.sql("SELECT customerID, tenure, MonthlyCharges, TotalCharges, CASE WHEN tenure > 0 THEN TotalCharges / tenure ELSE 0 END as avg_monthly_actual FROM customer_data WHERE tenure > 0").cache()
consumption_stability.createOrReplaceTempView("stability_data")
stability_stats = spark.sql("SELECT AVG(ABS(MonthlyCharges - avg_monthly_actual)) as avg_variance, STDDEV(MonthlyCharges) as charge_stddev FROM stability_data").collect()[0]
stable_customers = spark.sql("SELECT COUNT(*) as stable_count, (COUNT(*) * 100.0 / (SELECT COUNT(*) FROM stability_data)) as stable_percentage FROM stability_data WHERE ABS(MonthlyCharges - avg_monthly_actual) <= {}".format(stability_stats['charge_stddev'])).collect()[0]
result_data = {"monthly_charges_distribution": {"q1": round(monthly_charges_stats['q1'], 2), "median": round(monthly_charges_stats['median'], 2), "q3": round(monthly_charges_stats['q3'], 2), "average": round(monthly_charges_stats['avg_charges'], 2), "min": round(monthly_charges_stats['min_charges'], 2), "max": round(monthly_charges_stats['max_charges'], 2)}, "consumption_levels": [{"level": row['consumption_level'], "customer_count": row['customer_count'], "avg_monthly": round(row['avg_monthly'], 2), "avg_total": round(row['avg_total'], 2)} for row in consumption_levels], "payment_methods": [{"method": row['PaymentMethod'], "customer_count": row['customer_count'], "avg_charges": round(row['avg_charges'], 2), "percentage": round(row['percentage'], 2)} for row in payment_analysis], "paperless_billing": [{"paperless": row['PaperlessBilling'], "customer_count": row['customer_count'], "avg_charges": round(row['avg_charges'], 2), "usage_rate": round(row['usage_rate'], 2)} for row in paperless_analysis], "consumption_stability": {"avg_variance": round(stability_stats['avg_variance'], 2), "stable_customer_percentage": round(stable_customers['stable_percentage'], 2)}}
return JsonResponse(result_data)
def service_usage_analysis(request):
df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/telecom_data/customer_data.csv")
df.createOrReplaceTempView("customer_data")
core_service_usage = spark.sql("SELECT SUM(CASE WHEN PhoneService = 'Yes' THEN 1 ELSE 0 END) as phone_users, (SUM(CASE WHEN PhoneService = 'Yes' THEN 1 ELSE 0 END) * 100.0 / COUNT(*)) as phone_rate, SUM(CASE WHEN InternetService != 'No' THEN 1 ELSE 0 END) as internet_users, (SUM(CASE WHEN InternetService != 'No' THEN 1 ELSE 0 END) * 100.0 / COUNT(*)) as internet_rate FROM customer_data").collect()[0]
internet_type_analysis = spark.sql("SELECT InternetService, COUNT(*) as customer_count, AVG(MonthlyCharges) as avg_charges, (COUNT(*) * 100.0 / (SELECT COUNT(*) FROM customer_data WHERE InternetService != 'No')) as type_percentage FROM customer_data WHERE InternetService != 'No' GROUP BY InternetService").collect()
multiple_lines_analysis = spark.sql("SELECT MultipleLines, COUNT(*) as customer_count, AVG(MonthlyCharges) as avg_charges FROM customer_data WHERE PhoneService = 'Yes' GROUP BY MultipleLines").collect()
value_added_services = ['OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMovies']
service_usage_stats = []
for service in value_added_services:
usage_stat = spark.sql("SELECT '{}' as service_name, SUM(CASE WHEN {} = 'Yes' THEN 1 ELSE 0 END) as users, (SUM(CASE WHEN {} = 'Yes' THEN 1 ELSE 0 END) * 100.0 / COUNT(*)) as usage_rate, AVG(CASE WHEN {} = 'Yes' THEN MonthlyCharges ELSE 0 END) as avg_charges_with_service FROM customer_data".format(service, service, service, service)).collect()[0]
service_usage_stats.append(usage_stat)
service_correlation_df = df.select(*value_added_services).na.drop()
for service in value_added_services:
service_correlation_df = service_correlation_df.withColumn(service, when(col(service) == "Yes", 1).otherwise(0))
assembler = VectorAssembler(inputCols=value_added_services, outputCol="features")
service_vector_df = assembler.transform(service_correlation_df)
correlation_matrix = Correlation.corr(service_vector_df, "features").head()
correlation_array = correlation_matrix[0].toArray()
service_combinations = spark.sql("SELECT CONCAT_WS(',', CASE WHEN OnlineSecurity = 'Yes' THEN 'OnlineSecurity' END, CASE WHEN OnlineBackup = 'Yes' THEN 'OnlineBackup' END, CASE WHEN DeviceProtection = 'Yes' THEN 'DeviceProtection' END, CASE WHEN TechSupport = 'Yes' THEN 'TechSupport' END, CASE WHEN StreamingTV = 'Yes' THEN 'StreamingTV' END, CASE WHEN StreamingMovies = 'Yes' THEN 'StreamingMovies' END) as service_combo, COUNT(*) as combo_count, AVG(MonthlyCharges) as avg_combo_charges FROM customer_data GROUP BY service_combo HAVING combo_count > 10 ORDER BY combo_count DESC LIMIT 10").collect()
result_data = {"core_services": {"phone_users": int(core_service_usage['phone_users']), "phone_usage_rate": round(core_service_usage['phone_rate'], 2), "internet_users": int(core_service_usage['internet_users']), "internet_usage_rate": round(core_service_usage['internet_rate'], 2)}, "internet_types": [{"type": row['InternetService'], "customer_count": row['customer_count'], "avg_charges": round(row['avg_charges'], 2), "percentage": round(row['type_percentage'], 2)} for row in internet_type_analysis], "multiple_lines": [{"status": row['MultipleLines'], "customer_count": row['customer_count'], "avg_charges": round(row['avg_charges'], 2)} for row in multiple_lines_analysis], "value_added_services": [{"service": row['service_name'], "users": int(row['users']), "usage_rate": round(row['usage_rate'], 2), "avg_charges": round(row['avg_charges_with_service'], 2)} for row in service_usage_stats], "top_service_combinations": [{"combination": row['service_combo'], "customer_count": row['combo_count'], "avg_charges": round(row['avg_combo_charges'], 2)} for row in service_combinations]}
return JsonResponse(result_data)
电信客服数据处理与分析系统-结语
计算机毕业设计选题推荐:基于数据挖掘的电信客服数据处理分析系统源码 毕业设计/选题推荐/深度学习/数据分析/数据挖掘/机器学习/随机森林 如果你觉得内容不错,欢迎一键三连(点赞、收藏、关注)支持一下!也欢迎在评论区或在博客主页上私信联系留下你的想法或提出宝贵意见,期待与大家交流探讨!谢谢!