简单来说,文档解析(Document Parsing)的核心任务,就是将 PDF 文件、扫描图像或照片等载体中的非结构化数据,自动转化为计算机系统能够直接理解和处理的结构化数据,是一个信息提取和组织的智能化过程。
那么,它和我们通常认知的 OCR 概念有何分别呢?
OCR,即光学字符识别,最早可以追溯到早期模式识别研究,它的核心能力是将图片中的文字区域识别出来,并将其转换为可编辑、可搜索的文本字符。早期的 OCR 系统识别精度有限,主要针对特定印刷字体。随着技术进步,特别是深度学习在计算机视觉领域的广泛应用,OCR 的精度和速度得到了质的飞跃,不仅能更准确地识别各种印刷体,对手写体的识别能力也大大增强,为后续的信息处理奠定了基础。
然而,在如今的 AI 时代,仅仅将图像变成文本字符(OCR 的输出)是远远不够的。一份文档的价值不仅在于其中的文字,更在于文字所代表的具体信息及其上下文关系。例如,发票上的“金额”数字旁通常会有“¥”或其他货币标识,而一份简历中的“工作经验”会按时间顺序排列在特定区域。
因此复杂文档解析技术的核心难点就是能够在大模型理解能力的帮助下,理解文章段落版式,准确提取出文档中的各类信息,并保证顺序逻辑正确。而TextIn在复杂文档解析领域的突破就是它在 OCR 提供的原始文本基础上,进一步运用布局分析(理解文档的物理结构,如段落、表格、标题位置)和语义理解(识别关键实体如姓名、日期、金额、条款,理解它们之间的关系),获取完整信息片段,并将其高度结构化地输出为 Markdown、JSON 或直接导入数据库的标准格式。
我们可以通过一个案例简单理解其中分别:
因此,文档解析是 OCR 能力的延伸和升级,从单纯的“识字”到真正的“理解文档”,文档解析为企业的自动化流程和数据分析提供了可直接使用的“原料”。