Zookeeper(65)Zookeeper在Hadoop中的应用是什么?

178 阅读4分钟

Zookeeper 在 Hadoop 生态系统中扮演了重要的角色,主要用于协调和管理分布式系统中的多个组件。以下是 Zookeeper 在 Hadoop 中的几种主要应用,并结合代码进行详细说明:

1. Namenode 高可用性(HDFS)

在 Hadoop 分布式文件系统(HDFS)中,Zookeeper 被用来实现 Namenode 的高可用性(HA)。HDFS 高可用性架构中会有两个 Namenode:一个是 Active 状态,另一个是 Standby 状态。Zookeeper 用于协调这两个 Namenode 的状态转换,确保在 Active Namenode 发生故障时,Standby Namenode 可以迅速接管。

HDFS 高可用性配置

以下是一个基本的 HDFS HA 配置示例,假设集群中有两个 Namenode:nn1 和 nn2。

1. 配置 core-site.xml

在 HDFS 的 core-site.xml 文件中,添加以下配置:

<configuration>
  <property>
    <name>ha.zookeeper.quorum</name>
    <value>zk1:2181,zk2:2181,zk3:2181</value>
  </property>
</configuration>
2. 配置 hdfs-site.xml

在 HDFS 的 hdfs-site.xml 文件中,添加以下配置:

<configuration>
  <property>
    <name>dfs.nameservices</name>
    <value>mycluster</value>
  </property>

  <property>
    <name>dfs.ha.namenodes.mycluster</name>
    <value>nn1,nn2</value>
  </property>

  <property>
    <name>dfs.namenode.rpc-address.mycluster.nn1</name>
    <value>nn1:8020</value>
  </property>

  <property>
    <name>dfs.namenode.rpc-address.mycluster.nn2</name>
    <value>nn2:8020</value>
  </property>

  <property>
    <name>dfs.namenode.http-address.mycluster.nn1</name>
    <value>nn1:50070</value>
  </property>

  <property>
    <name>dfs.namenode.http-address.mycluster.nn2</name>
    <value>nn2:50070</value>
  </property>

  <property>
    <name>dfs.client.failover.proxy.provider.mycluster</name>
    <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
  </property>

  <property>
    <name>dfs.ha.automatic-failover.enabled</name>
    <value>true</value>
  </property>

  <property>
    <name>dfs.ha.fencing.methods</name>
    <value>sshfence</value>
  </property>

  <property>
    <name>dfs.ha.fencing.ssh.private-key-files</name>
    <value>/home/hadoop/.ssh/id_rsa</value>
  </property>

  <property>
    <name>dfs.ha.zkfc.port</name>
    <value>8019</value>
  </property>
</configuration>

2. ResourceManager 高可用性(YARN)

在 YARN 中,Zookeeper 被用来实现 ResourceManager 的高可用性。YARN 的 ResourceManager 也有 Active 和 Standby 两种状态,Zookeeper 用于协调这两个 ResourceManager 的状态转换。

YARN 高可用性配置

以下是一个基本的 YARN HA 配置示例,假设集群中有两个 ResourceManager:rm1 和 rm2。

1. 配置 core-site.xml

在 YARN 的 core-site.xml 文件中,添加以下配置:

<configuration>
  <property>
    <name>ha.zookeeper.quorum</name>
    <value>zk1:2181,zk2:2181,zk3:2181</value>
  </property>
</configuration>
2. 配置 yarn-site.xml

在 YARN 的 yarn-site.xml 文件中,添加以下配置:

<configuration>
  <property>
    <name>yarn.resourcemanager.ha.enabled</name>
    <value>true</value>
  </property>

  <property>
    <name>yarn.resourcemanager.cluster-id</name>
    <value>yarn-cluster</value>
  </property>

  <property>
    <name>yarn.resourcemanager.ha.rm-ids</name>
    <value>rm1,rm2</value>
  </property>

  <property>
    <name>yarn.resourcemanager.hostname.rm1</name>
    <value>rm1</value>
  </property>

  <property>
    <name>yarn.resourcemanager.hostname.rm2</name>
    <value>rm2</value>
  </property>

  <property>
    <name>yarn.resourcemanager.address.rm1</name>
    <value>rm1:8032</value>
  </property>

  <property>
    <name>yarn.resourcemanager.address.rm2</name>
    <value>rm2:8032</value>
  </property>

  <property>
    <name>yarn.resourcemanager.admin.address.rm1</name>
    <value>rm1:8033</value>
  </property>

  <property>
    <name>yarn.resourcemanager.admin.address.rm2</name>
    <value>rm2:8033</value>
  </property>

  <property>
    <name>yarn.resourcemanager.webapp.address.rm1</name>
    <value>rm1:8088</value>
  </property>

  <property>
    <name>yarn.resourcemanager.webapp.address.rm2</name>
    <value>rm2:8088</value>
  </property>

  <property>
    <name>yarn.resourcemanager.zk-address</name>
    <value>zk1:2181,zk2:2181,zk3:2181</value>
  </property>
</configuration>

3. Zookeeper 在 HBase 中的应用

HBase 是一个分布式存储系统,Zookeeper 在 HBase 中被广泛应用于以下几个方面:

  • Master 选举:HBase 集群中会有多个 Master 节点,通过 Zookeeper 进行选举,确保只有一个 Master 处于 Active 状态。
  • RegionServer 协调:Zookeeper 用于存储 RegionServer 的状态信息,协调 RegionServer 的启动和停止。
  • 元数据管理:Zookeeper 用于存储 HBase 的元数据,例如表的分区信息等。

HBase 配置

以下是一个基本的 HBase 配置示例,假设集群中有三个 Zookeeper 节点:zk1、zk2 和 zk3。

1. 配置 hbase-site.xml

在 HBase 的 hbase-site.xml 文件中,添加以下配置:

<configuration>
  <property>
    <name>hbase.zookeeper.quorum</name>
    <value>zk1,zk2,zk3</value>
  </property>

  <property>
    <name>hbase.zookeeper.property.clientPort</name>
    <value>2181</value>
  </property>

  <property>
    <name>hbase.master</name>
    <value>master1:16000</value>
  </property>

  <property>
    <name>hbase.master</name>
    <value>master2:16000</value>
  </property>
</configuration>

4. 代码示例

以下是一个使用 Zookeeper 实现简单分布式锁的代码示例,这种机制在 Hadoop 的内部实现中也有类似的应用。

ZookeeperClient.java

import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooKeeper;

public class ZookeeperClient {
    private static final String ZK_ADDRESS = "localhost:2181";
    private static final int SESSION_TIMEOUT = 3000;
    private ZooKeeper zooKeeper;

    public void connect() throws Exception {
        zooKeeper = new ZooKeeper(ZK_ADDRESS, SESSION_TIMEOUT, new Watcher() {
            @Override
            public void process(WatchedEvent event) {
                System.out.println("Received event: " + event);
            }
        });
    }

    public void close() throws InterruptedException {
        if (zooKeeper != null) {
            zooKeeper.close();
        }
    }

    public ZooKeeper getZooKeeper() {
        return zooKeeper;
    }

    public static void main(String[] args) {
        ZookeeperClient client = new ZookeeperClient();
        try {
            client.connect();
            // 在这里可以测试分布式锁
            client.close();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

DistributedLock.java

import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.KeeperException;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooDefs;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.data.Stat;

import java.util.Collections;
import java.util.List;
import java.util.concurrent.CountDownLatch;

public class DistributedLock {
    private ZooKeeper zooKeeper;
    private String lockRoot = "/locks";
    private String lockName;
    private String lockPath;
    private String currentLock;
    private String waitLock;
    private CountDownLatch latch;

    public DistributedLock(ZooKeeper zooKeeper, String lockName) throws KeeperException, InterruptedException {
        this.zooKeeper = zooKeeper;
        this.lockName = lockName;
        if (zooKeeper.exists(lockRoot, false) == null) {
            zooKeeper.create(lockRoot, new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
        }
    }

    public void lock() throws KeeperException, InterruptedException {
        lockPath = zooKeeper.create(lockRoot + "/" + lockName + "_", new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
        attemptLock();
    }

    private void attemptLock() throws KeeperException, InterruptedException {
        List<String> children = zooKeeper.getChildren(lockRoot, false);
        Collections.sort(children);
        String sequenceNodeName = lockPath.substring(lockRoot.length() + 1);
        int index = children.indexOf(sequenceNodeName);

        if (index == 0) {
            currentLock = lockPath;
            return;
        } else {
            waitLock = lockRoot + "/" + children.get(index - 1);
            Stat stat = zooKeeper.exists(waitLock, new Watcher() {
                @Override
                public void process(WatchedEvent event) {
                    if (event.getType() == Event.EventType.NodeDeleted) {
                        latch.countDown();
                    }
                }
            });

            if (stat != null) {
                latch = new CountDownLatch(1);
                latch.await();
                attemptLock();
            }
        }
    }

    public void unlock() throws KeeperException, InterruptedException {
        if (currentLock != null) {
            zooKeeper.delete(currentLock, -1);
            currentLock = null;
        }
    }

    public static void main(String[] args) {
        ZookeeperClient client = new ZookeeperClient();
        try {
            client.connect();
            ZooKeeper zooKeeper = client.getZooKeeper();
            DistributedLock lock = new DistributedLock(zooKeeper, "testLock");

            // 获取锁
            lock.lock();
            System.out.println("Lock acquired!");

            // 模拟业务逻辑
            Thread.sleep(3000);

            // 释放锁
            lock.unlock();
            System.out.println("Lock released!");

            client.close();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

总结

Zookeeper 在 Hadoop 生态系统中有着广泛的应用,主要用于协调和管理分布式系统中的多个组件。具体应用包括:

  1. Namenode 高可用性(HDFS):通过 Zookeeper 协调 Active 和 Standby Namenode 的状态转换。
  2. ResourceManager 高可用性(YARN):通过 Zookeeper 协调 Active 和 Standby ResourceManager 的状态转换。
  3. HBase 管理:用于 Master 选举、RegionServer 协调和元数据管理。

通过以上方法,可以在 Hadoop 中使用 Zookeeper 实现高效稳定的分布式协调。根据实际情况和需求,选择适合你的实现方法并进行实施。