提示工程
在提示模板的构建过程中加入了partial_variables,也就是输出解析器指定的format_instructions之后,为什么能够让模型生成结构化的输出?
您是一位专业的鲜花店文案撰写员。
对于售价为 50 元的 玫瑰 ,您能提供一个吸引人的简短描述吗?
The output should be a markdown code snippet formatted in the following schema, including the leading and trailing "```json" and "```":
```json
{
"description": string // 鲜花的描述文案
"reason": string // 问什么要这样写这个文案
}
LangChain的输出解析器在提示中加了一段话,是{format_instruction}中的内容,提示指出,模型需要根据一个schema来格式化输出文本。
大模型提示工程该如何做?
第一条原则是写出清晰而具体的指示,第二条原则是给模型思考的时间。
- 指令(Instuction)告诉模型这个任务大概要做什么、怎么做,比如如何使用提供的外部信息、如何处理查询以及如何构造输出。这通常是一个提示模板中比较固定的部分。一个常见用例是告诉模型“你是一个有用的XX助手”,这会让他更认真地对待自己的角色。
- 上下文(Context)则充当模型的额外知识来源。这些信息可以手动插入到提示中,通过矢量数据库检索得来,或通过其他方式(如调用API、计算器等工具)拉入。一个常见的用例时是把从向量数据库查询到的知识作为上下文传递给模型。
- 提示输入(Prompt Input)通常就是具体的问题或者需要大模型做的具体事情,这个部分和“指令”部分其实也可以合二为一。但是拆分出来成为一个独立的组件,就更加结构化,便于复用模板。这通常是作为变量,在调用模型之前传递给提示模板,以形成具体的提示。
- 输出指示器(Output Indicator)标记要生成的文本的开始。这就像我们小时候的数学考卷,先写一个“解”,就代表你要开始答题了。如果生成 Python 代码,可以使用 “import” 向模型表明它必须开始编写 Python 代码(因为大多数 Python 脚本以import开头)。这部分在我们和ChatGPT对话时往往是可有可无的,当然LangChain中的代理在构建提示模板时,经常性的会用一个“Thought:”(思考)作为引导词,指示模型开始输出自己的推理(Reasoning)。
LangChain提供模版的类型
LangChain中提供String(StringPromptTemplate)和Chat(BaseChatPromptTemplate)两种基本类型的模板,并基于它们构建了不同类型的提示模板:
from langchain.prompts.prompt import PromptTemplate
from langchain.prompts import FewShotPromptTemplate
from langchain.prompts.pipeline import PipelinePromptTemplate
from langchain.prompts import ChatPromptTemplate
from langchain.prompts import (
ChatMessagePromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
PromptTemplate
from langchain import PromptTemplate
template = """\
你是业务咨询顾问。
你给一个销售{product}的电商公司,起一个好的名字?
"""
prompt = PromptTemplate.from_template(template)
print(prompt.format(product="鲜花"))
ChatPromptTemplate
OpenAI的Chat Model中的各种消息角色:
import openai
openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who won the world series in 2020?"},
{"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
{"role": "user", "content": "Where was it played?"}
]
)
OpenAI对传输到gpt-3.5-turbo和GPT-4的messsage格式说明如下:
消息必须是消息对象的数组,其中每个对象都有一个角色(系统、用户或助理)和内容。对话可以短至一条消息,也可以来回多次。
通常,对话首先由系统消息格式化,然后是交替的用户消息和助理消息。
系统消息有助于设置助手的行为。例如,你可以修改助手的个性或提供有关其在整个对话过程中应如何表现的具体说明。但请注意,系统消息是可选的,并且没有系统消息的模型的行为可能类似于使用通用消息,例如“你是一个有用的助手”。
用户消息提供助理响应的请求或评论。
助理消息存储以前的助理响应,但也可以由你编写以给出所需行为的示例。
LangChain就是围绕这一系列角色设计的:
# 导入聊天消息类模板
from langchain.prompts import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
# 模板的构建
template="你是一位专业顾问,负责为专注于{product}的公司起名。"
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template="公司主打产品是{product_detail}。"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
prompt_template = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
# 格式化提示消息生成提示
prompt = prompt_template.format_prompt(product="鲜花装饰", product_detail="创新的鲜花设计。").to_messages()
# 下面调用模型,把提示传入模型,生成结果
import os
os.environ["OPENAI_API_KEY"] = '你的OpenAI Key'
from langchain.chat_models import ChatOpenAI
chat = ChatOpenAI()
result = chat(prompt)
print(result)
输出:
content='1. 花语创意\n2. 花韵设计\n3. 花艺创新\n4. 花漾装饰\n5. 花语装点\n6. 花翩翩\n7. 花语之美\n8. 花馥馥\n9. 花语时尚\n10. 花之魅力'
additional_kwargs={}
example=False
FewShotPromptTemplate
- 创建示例样本
创建一些示例,作为提示的样本。其中每个示例都是一个字典,其中键是输入变量,值是这些输入变量的值。
# 1. 创建一些示例
samples = [
{
"flower_type": "玫瑰",
"occasion": "爱情",
"ad_copy": "玫瑰,浪漫的象征,是你向心爱的人表达爱意的最佳选择。"
},
{
"flower_type": "康乃馨",
"occasion": "母亲节",
"ad_copy": "康乃馨代表着母爱的纯洁与伟大,是母亲节赠送给母亲的完美礼物。"
},
{
"flower_type": "百合",
"occasion": "庆祝",
"ad_copy": "百合象征着纯洁与高雅,是你庆祝特殊时刻的理想选择。"
},
{
"flower_type": "向日葵",
"occasion": "鼓励",
"ad_copy": "向日葵象征着坚韧和乐观,是你鼓励亲朋好友的最好方式。"
}
]
这些示例样本,就是构建FewShotPrompt时,作为例子传递给模型的参考信息。
- 创建提示模版
配置一个提示模板,将一个示例格式化为字符串。这个格式化程序应该是一个PromptTemplate对象。
# 2. 创建一个提示模板
from langchain.prompts.prompt import PromptTemplate
template="鲜花类型: {flower_type}\n场合: {occasion}\n文案: {ad_copy}"
prompt_sample = PromptTemplate(input_variables=["flower_type", "occasion", "ad_copy"],
template=template)
print(prompt_sample.format(**samples[0]))
# 输出
鲜花类型: 玫瑰
场合: 爱情
文案: 玫瑰,浪漫的象征,是你向心爱的人表达爱意的最佳选择。
3. 创建FewShotPrompt对象
通过使用上一步创建的prompt_sample,以及samples列表中的所有示例,创建一个FewShotPrompt对象,生成更复杂的提示。
# 3. 创建一个FewShotPromptTemplate对象
from langchain.prompts.few_shot import FewShotPromptTemplate
prompt = FewShotPromptTemplate(
examples=samples,
example_prompt=prompt_sample,
suffix="鲜花类型: {flower_type}\n场合: {occasion}",
input_variables=["flower_type", "occasion"]
)
print(prompt.format(flower_type="野玫瑰", occasion="爱情"))
# 输出
鲜花类型: 玫瑰
场合: 爱情
文案: 玫瑰,浪漫的象征,是你向心爱的人表达爱意的最佳选择。
鲜花类型: 康乃馨
场合: 母亲节
文案: 康乃馨代表着母爱的纯洁与伟大,是母亲节赠送给母亲的完美礼物。
鲜花类型: 百合
场合: 庆祝
文案: 百合象征着纯洁与高雅,是你庆祝特殊时刻的理想选择。
鲜花类型: 向日葵
场合: 鼓励
文案: 向日葵象征着坚韧和乐观,是你鼓励亲朋好友的最好方式。
鲜花类型: 野玫瑰
场合: 爱情
4. 调用大模型创建新文案
最后,把这个对象输出给大模型,就可以根据提示得到所要的文案了。
# 4. 把提示传递给大模型
import os
os.environ["OPENAI_API_KEY"] = '你的Open AI Key'
from langchain.llms import OpenAI
model = OpenAI(model_name='gpt-3.5-turbo-instruct')
result = model(prompt.format(flower_type="野玫瑰", occasion="爱情"))
print(result)
# 输出
文案: 野玫瑰代表着爱情的坚贞,是你向心爱的人表达爱意的最佳礼物。
示例选择器
如果示例很多,一次性发给模型不现实且低效,浪费流量。
LangChain提供了示例选择器,来选择最合适的样本。(示例选择器使用向量相似度比较的功能,会用到向量数据库)
# 5. 使用示例选择器
from langchain.prompts.example_selector import SemanticSimilarityExampleSelector
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
# 初始化示例选择器
example_selector = SemanticSimilarityExampleSelector.from_examples(
samples,
OpenAIEmbeddings(),
Chroma,
k=1
)
# 创建一个使用示例选择器的FewShotPromptTemplate对象
prompt = FewShotPromptTemplate(
example_selector=example_selector,
example_prompt=prompt_sample,
suffix="鲜花类型: {flower_type}\n场合: {occasion}",
input_variables=["flower_type", "occasion"]
)
print(prompt.format(flower_type="红玫瑰", occasion="爱情"))
示例选择器根据语义的相似度找到最相似的示例。