LLM 代理的核心是 LLM 和一组工具(如搜索引擎、API 或数据存储)的组合。LLM充当推理引擎,利用这些工具和可用信息来解决复杂的任务。想象一下,拥有一个私人助理,他不仅可以理解您的人类语言指令,还可以访问和处理来自各种来源的信息,以帮助您做出明智的决定。Agents模块还包含配合代理执行的工具(代理可以执行的操作。为代理提供哪些工具在很大程度上取决于希望代理做什么)和工具包(一套工具集合,这些工具可以与特定用例一起使用。例如,为了使代理与SQL数据库进行交互,它可能需要一个工具来执行查询,另一个工具来检查表)。
Agent(代理)示例
1.网页搜索工具 您可以轻松地将不同类型的 Web 搜索作为可用操作添加到您的代理中,可以是 Google 搜索、Baidu搜索、sohu 等。
2.在矢量数据库中嵌入搜索 您可以从检索器创建一个工具并根据需要对其进行描述,代理将使用此工具来获取某种数据,例如相似性检查和嵌入模型。
3.特殊场景处理 例如可以在 Internet 上搜索某种信息,执行推理步骤,然后调用操作来创建 Jira 事务。
4.API集成工具 LangChain框架已经做了很多API集成,你需要做的就是获取API密钥,安装包并将工具附加到代理上。
5.自定义工具 您可以编写自定义工具,可以集成您的内部 API、文档系统和许多其他应用程序的集成!
LLM Agents 的好处
利用 LLM 的自然语言理解和生成能力:LLM 擅长处理和生成类似人类的文本,使其非常适合自然语言交互。
访问和处理来自各种来源的外部信息:通过与搜索引擎、API 和数据库等工具集成,LLM 代理可以检索和处理超出其初始训练数据的信息。
将推理与复杂任务的工具交互相结合:LLM 代理可以对检索到的信息进行推理,并使用它来做出决策、回答问题,甚至通过与集成工具交互来采取行动。
小结
LangChain的代理彻底改变了我们对大型语言模型的思考方式。通过将 LLM 与外部工具和数据源相结合,该框架使我们能够处理复杂的推理任务并做出明智的决策。