- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
要求:
- 了解model.train_on_batch()并运用
- 了解tqdm,并使用tqdm实现可视化进度条
拔高(可选):
- 本文代码中存在一个严重的BUG,请找出它并配以文字说明
探索(难度有点大)
- 修改代码,处理BUG
这篇文章中我放弃了以往的model.fit()训练方法,改用model.train_on_batch方法。两种方法的比较:
- model.fit():用起来十分简单,对新手非常友好
- model.train_on_batch():封装程度更低,可以玩更多花样。
此外我也引入了进度条的显示方式,更加方便我们及时查看模型训练过程中的情况,可以及时打印各项指标。
一、前期工作
1. 设置GPU
我的环境
- 操作系统:CentOS7
- 显卡:RTX3090 两张
- 显卡驱动:550.78
- CUDA版本: 12.4
- 语言环境:Python3.9.19
- 编译器:Jupyter Lab
- 深度学习环境:
- TensorFlow-2.17.0 (GPU版本)
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
tf.config.experimental.set_memory_growth(gpus[0], True) #设置GPU显存用量按需使用
tf.config.set_visible_devices([gpus[0]],"GPU")
# 打印显卡信息,确认GPU可用
print(gpus)
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU'), PhysicalDevice(name='/physical_device:GPU:1', device_type='GPU')]
2. 导入数据
import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
import os,PIL,pathlib
#隐藏警告
import warnings
warnings.filterwarnings('ignore')
data_dir = "./data"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)
图片总数为: 3400
二、数据预处理
1. 加载数据
batch_size = 8
img_height = 224
img_width = 224
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=12,
image_size=(img_height, img_width),
batch_size=batch_size)
Found 3400 files belonging to 2 classes.
Using 2720 files for training.
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=12,
image_size=(img_height, img_width),
batch_size=batch_size)
Found 3400 files belonging to 2 classes.
Using 680 files for validation.
class_names = train_ds.class_names
print(class_names)
['cat', 'dog']
for image_batch, labels_batch in train_ds:
print(image_batch.shape)
print(labels_batch.shape)
break
(8, 224, 224, 3)
(8,)
- Image_batch是形状的张量(8, 224, 224, 3)。这是一批形状224x224x3的8张图片(最后一维指的是彩色通道RGB)。
- Label_batch是形状(8,)的张量,这些标签对应8张图片
2. 配置数据集
- shuffle() : 打乱数据,关于此函数的详细介绍可以参考:zhuanlan.zhihu.com/p/42417456
- prefetch() :预取数据,加速运行,其详细介绍可以参考我前两篇文章,里面都有讲解。
- cache() :将数据集缓存到内存当中,加速运行
AUTOTUNE = tf.data.AUTOTUNE
def preprocess_image(image,label):
return (image/255.0,label)
# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
3. 可视化数据
plt.figure(figsize=(15, 10)) # 图形的宽为15高为10
for images, labels in train_ds.take(1):
for i in range(8):
ax = plt.subplot(5, 8, i + 1)
plt.imshow(images[i])
plt.title(class_names[labels[i]])
plt.axis("off")
三、 构建VGG-16网络模型
VGG优缺点分析:
- VGG优点
VGG的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)。
- VGG缺点
1)训练时间过长,调参难度大。2)需要的存储容量大,不利于部署。例如存储VGG-16权重值文件的大小为500多MB,不利于安装到嵌入式系统中。
结构说明:
- 13个卷积层(Convolutional Layer),分别用blockX_convX表示
- 3个全连接层(Fully connected Layer),分别用fcX与predictions表示
- 5个池化层(Pool layer),分别用blockX_pool表示
VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16
from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout
def VGG16(nb_classes, input_shape):
input_tensor = Input(shape=input_shape)
# 1st block
x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)
x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)
# 2nd block
x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)
x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)
# 3rd block
x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)
x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)
x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)
# 4th block
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)
# 5th block
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)
# full connection
x = Flatten()(x)
x = Dense(4096, activation='relu', name='fc1')(x)
x = Dense(4096, activation='relu', name='fc2')(x)
output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)
model = Model(input_tensor, output_tensor)
return model
model=VGG16(1000, (img_width, img_height, 3))
model.summary()
Model: "functional_1"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ │ input_layer_1 (InputLayer) │ (None, 224, 224, 3) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ block1_conv1 (Conv2D) │ (None, 224, 224, 64) │ 1,792 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ block1_conv2 (Conv2D) │ (None, 224, 224, 64) │ 36,928 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ block1_pool (MaxPooling2D) │ (None, 112, 112, 64) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ block2_conv1 (Conv2D) │ (None, 112, 112, 128) │ 73,856 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ block2_conv2 (Conv2D) │ (None, 112, 112, 128) │ 147,584 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ block2_pool (MaxPooling2D) │ (None, 56, 56, 128) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ block3_conv1 (Conv2D) │ (None, 56, 56, 256) │ 295,168 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ block3_conv2 (Conv2D) │ (None, 56, 56, 256) │ 590,080 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ block3_conv3 (Conv2D) │ (None, 56, 56, 256) │ 590,080 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ block3_pool (MaxPooling2D) │ (None, 28, 28, 256) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ block4_conv1 (Conv2D) │ (None, 28, 28, 512) │ 1,180,160 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ block4_conv2 (Conv2D) │ (None, 28, 28, 512) │ 2,359,808 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ block4_conv3 (Conv2D) │ (None, 28, 28, 512) │ 2,359,808 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ block4_pool (MaxPooling2D) │ (None, 14, 14, 512) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ block5_conv1 (Conv2D) │ (None, 14, 14, 512) │ 2,359,808 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ block5_conv2 (Conv2D) │ (None, 14, 14, 512) │ 2,359,808 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ block5_conv3 (Conv2D) │ (None, 14, 14, 512) │ 2,359,808 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ block5_pool (MaxPooling2D) │ (None, 7, 7, 512) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ flatten_1 (Flatten) │ (None, 25088) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ fc1 (Dense) │ (None, 4096) │ 102,764,544 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ fc2 (Dense) │ (None, 4096) │ 16,781,312 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ predictions (Dense) │ (None, 1000) │ 4,097,000 │ └─────────────────────────────────┴────────────────────────┴───────────────┘
Total params: 138,357,544 (527.79 MB)
Trainable params: 138,357,544 (527.79 MB)
Non-trainable params: 0 (0.00 B)
四、 模型编译与训练
在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:
- 损失函数(loss):用于衡量模型在训练期间的准确率。
- 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
- 评价函数(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
model.compile(optimizer='Adam',
loss ='sparse_categorical_crossentropy',
metrics =['accuracy'])
from tqdm import tqdm
import tensorflow.python.keras.backend as K
#import tensorflow.keras.backend as K
epochs = 10
lr = 1e-4
# 记录训练数据,方便后面的分析
history_train_loss = []
history_train_accuracy = []
history_val_loss = []
history_val_accuracy = []
for epoch in range(epochs):
train_total = len(train_ds)
val_total = len(val_ds)
"""
total:预期的迭代数目
ncols:控制进度条宽度
mininterval:进度更新最小间隔,以秒为单位(默认值:0.1)
"""
with tqdm(total=train_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=1,ncols=100) as pbar:
lr = lr*0.92
K.set_value(model.optimizer.learning_rate, lr)
for image,label in train_ds:
"""
训练模型,简单理解train_on_batch就是:它是比model.fit()更高级的一个用法
想详细了解 train_on_batch 的同学,
可以看看我的这篇文章:https://www.yuque.com/mingtian-fkmxf/hv4lcq/ztt4gy
"""
history = model.train_on_batch(image,label)
train_loss = history[0]
train_accuracy = history[1]
pbar.set_postfix({"loss": "%.4f"%train_loss,
"accuracy":"%.4f"%train_accuracy,
"lr": K.get_value(model.optimizer.learning_rate)})
pbar.update(1)
history_train_loss.append(train_loss)
history_train_accuracy.append(train_accuracy)
print('开始验证!')
with tqdm(total=val_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=0.3,ncols=100) as pbar:
for image,label in val_ds:
history = model.test_on_batch(image,label)
val_loss = history[0]
val_accuracy = history[1]
pbar.set_postfix({"loss": "%.4f"%val_loss,
"accuracy":"%.4f"%val_accuracy})
pbar.update(1)
history_val_loss.append(val_loss)
history_val_accuracy.append(val_accuracy)
print('结束验证!')
print("验证loss为:%.4f"%val_loss)
print("验证准确率为:%.4f"%val_accuracy)
Epoch 1/10: 1%| | 2/340 [00:01<04:25, 1.27it/s, loss=6.7076, accuracy=0.3333, lr=9.2e-5]
Epoch 1/10: 1%| | 2/340 [00:02<04:25, 1.27it/s, loss=6.0955, accuracy=0.4688, lr=9.2e-5]
Epoch 1/10: 100%|███████▉| 339/340 [05:02<00:01, 1.03s/it, loss=0.8013, accuracy=0.5554, lr=9.2e-5]2024-10-25 17:11:32.477473: I tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: OUT_OF_RANGE: End of sequence
Epoch 1/10: 100%|████████| 340/340 [05:02<00:00, 1.13it/s, loss=0.8013, accuracy=0.5554, lr=9.2e-5]
开始验证!
Epoch 1/10: 4%|▊ | 3/85 [00:04<01:30, 1.11s/it, loss=0.7974, accuracy=0.5576]
Epoch 1/10: 6%|█▎ | 5/85 [00:04<00:50, 1.57it/s, loss=0.7960, accuracy=0.5585]
Epoch 1/10: 100%|█████████████████████| 85/85 [00:20<00:00, 4.09it/s, loss=0.7456, accuracy=0.5866]
结束验证!
验证loss为:0.7456
验证准确率为:0.5866
Epoch 2/10: 100%|███████| 340/340 [06:15<00:00, 1.06s/it, loss=0.5481, accuracy=0.7182, lr=8.46e-5]2024-10-25 17:18:08.713738: I tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: OUT_OF_RANGE: End of sequence
Epoch 2/10: 100%|███████| 340/340 [06:15<00:00, 1.10s/it, loss=0.5481, accuracy=0.7182, lr=8.46e-5]
开始验证!
Epoch 2/10: 100%|█████████████████████| 85/85 [00:18<00:00, 4.71it/s, loss=0.5062, accuracy=0.7409]
结束验证!
验证loss为:0.5062
验证准确率为:0.7409
Epoch 3/10: 100%|███████| 340/340 [07:21<00:00, 1.30s/it, loss=0.3960, accuracy=0.8035, lr=7.79e-5]
开始验证!
Epoch 3/10: 100%|█████████████████████| 85/85 [00:19<00:00, 4.39it/s, loss=0.3808, accuracy=0.8121]
结束验证!
验证loss为:0.3808
验证准确率为:0.8121
Epoch 4/10: 100%|███████| 340/340 [07:58<00:00, 1.43s/it, loss=0.3168, accuracy=0.8453, lr=7.16e-5]2024-10-25 17:34:06.505774: I tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: OUT_OF_RANGE: End of sequence
Epoch 4/10: 100%|███████| 340/340 [07:58<00:00, 1.41s/it, loss=0.3168, accuracy=0.8453, lr=7.16e-5]
开始验证!
Epoch 4/10: 100%|█████████████████████| 85/85 [00:21<00:00, 3.88it/s, loss=0.3087, accuracy=0.8509]
结束验证!
验证loss为:0.3087
验证准确率为:0.8509
Epoch 5/10: 100%|███████| 340/340 [08:55<00:00, 1.57s/it, loss=0.2694, accuracy=0.8714, lr=6.59e-5]
开始验证!
Epoch 5/10: 100%|█████████████████████| 85/85 [00:24<00:00, 3.44it/s, loss=0.2619, accuracy=0.8754]
结束验证!
验证loss为:0.2619
验证准确率为:0.8754
Epoch 6/10: 100%|███████| 340/340 [10:09<00:00, 1.79s/it, loss=0.2315, accuracy=0.8905, lr=6.06e-5]
开始验证!
Epoch 6/10: 100%|█████████████████████| 85/85 [00:25<00:00, 3.35it/s, loss=0.2251, accuracy=0.8937]
结束验证!
验证loss为:0.2251
验证准确率为:0.8937
Epoch 7/10: 100%|███████| 340/340 [10:49<00:00, 1.91s/it, loss=0.2022, accuracy=0.9049, lr=5.58e-5]
开始验证!
Epoch 7/10: 100%|█████████████████████| 85/85 [00:25<00:00, 3.30it/s, loss=0.1971, accuracy=0.9074]
结束验证!
验证loss为:0.1971
验证准确率为:0.9074
Epoch 8/10: 100%|███████| 340/340 [12:02<00:00, 2.26s/it, loss=0.1803, accuracy=0.9158, lr=5.13e-5]2024-10-25 18:17:40.812619: I tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: OUT_OF_RANGE: End of sequence
Epoch 8/10: 100%|███████| 340/340 [12:02<00:00, 2.13s/it, loss=0.1803, accuracy=0.9158, lr=5.13e-5]
开始验证!
Epoch 8/10: 100%|█████████████████████| 85/85 [00:30<00:00, 2.83it/s, loss=0.1783, accuracy=0.9171]
结束验证!
验证loss为:0.1783
验证准确率为:0.9171
Epoch 9/10: 100%|███████| 340/340 [12:53<00:00, 2.28s/it, loss=0.1648, accuracy=0.9240, lr=4.72e-5]
开始验证!
Epoch 9/10: 100%|█████████████████████| 85/85 [00:29<00:00, 2.85it/s, loss=0.1614, accuracy=0.9255]
结束验证!
验证loss为:0.1614
验证准确率为:0.9255
Epoch 10/10: 100%|██████| 340/340 [13:48<00:00, 2.44s/it, loss=0.1500, accuracy=0.9310, lr=4.34e-5]
开始验证!
Epoch 10/10: 100%|████████████████████| 85/85 [00:30<00:00, 2.78it/s, loss=0.1474, accuracy=0.9322]
结束验证!
验证loss为:0.1474
验证准确率为:0.9322
# 这是我们之前的训练方法。
# history = model.fit(
# train_ds,
# validation_data=val_ds,
# epochs=epochs
# )
五、 模型评估
epochs_range = range(epochs)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, history_train_accuracy, label='Training Accuracy')
plt.plot(epochs_range, history_val_accuracy, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, history_train_loss, label='Training Loss')
plt.plot(epochs_range, history_val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
六、 预测
import numpy as np
# 采用加载的模型(new_model)来看预测结果
plt.figure(figsize=(18, 3)) # 图形的宽为18高为5
plt.suptitle("预测结果展示")
for images, labels in val_ds.take(1):
for i in range(8):
ax = plt.subplot(1,8, i + 1)
# 显示图片
plt.imshow(images[i].numpy())
# 需要给图片增加一个维度
img_array = tf.expand_dims(images[i], 0)
# 使用模型预测图片中的人物
predictions = model.predict(img_array)
plt.title(class_names[np.argmax(predictions)])
plt.axis("off")
[1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m104s[0m 104s/step
[1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 68ms/step
[1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 45ms/step
[1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 56ms/step
[1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 60ms/step
[1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 67ms/step
[1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 95ms/step
[1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 38ms/step
七、 总结
- 在版本TF2.17.0中,需要用 "import tensorflow.python.keras.backend as K" 替换 "import tensorflow.keras.backend as K"
- model.optimizer.learning_rate 替换 model.optimizer.lr
- tqdm的进度条显示非常直观,且引入tqdm非常方便。
- 整个模型训练耗时3小时,平均GPU内存消耗8.6Gb (RTX3090).