12.1 THE BASIC THEORY

55 阅读3分钟

12.1 THE BASIC THEORY

12.1 基础理论

We first describe some general finiteness conditions. Let RR be a ring and let MM be a left RR -module.

我们首先描述一些一般有限性条件。设 RR 是一个环,MM 是一个左 RR -模。

Definition.

定义。

(1) The left RR -module MM is said to be a Noetherian RR -module or to satisfy the ascending chain condition on submodules (or A.C.C. on submodules) if there are no infinite increasing chains of submodules, i.e., whenever

(1)如果左 RR -模 MM 是一个诺特 RR -模或满足子模的升链条件(或子模的A.C.C.),则不存在无限的子模升链,即每当

M1M2M3{M}_{1} \subseteq {M}_{2} \subseteq {M}_{3} \subseteq \cdots

is an increasing chain of submodules of MM ,then there is a positive integer mm such that for all km,Mk=Mmk \geq m,{M}_{k} = {M}_{m} (so the chain becomes stationary at stage mm : Mm=Mm+1=Mm+2=).{M}_{m} = {M}_{m + 1} = {M}_{m + 2} = \ldots ).

是一个MM的递增子模块链,那么存在一个正整数mm,使得对于所有的km,Mk=Mmk \geq m,{M}_{k} = {M}_{m}(因此在阶段mm上链变为稳定:Mm=Mm+1=Mm+2=).{M}_{m} = {M}_{m + 1} = {M}_{m + 2} = \ldots ).

(2) The ring RR is said to be Noetherian if it is Noetherian as a left module over itself,i.e.,if there are no infinite increasing chains of left ideals in RR .

(2) 如果环RR作为自身的左模块是Noetherian的,即RR中不存在无限递增的左理想链,则称该环为Noetherian环。

One can formulate analogous notions of A.C.C. on right and on two-sided ideals in a (possibly noncommutative) ring RR . For noncommutative rings these properties need not be related.

可以在(可能是非交换的)环RR中对于右理想和双边理想制定A.C.C.的类似概念。对于非交换环,这些属性不一定相关。

Theorem 1. Let RR be a ring and let MM be a left RR -module. Then the following are equivalent:

定理1。设RR为一个环,MM为一个左RR模块。那么以下条件是等价的:

(1) MM is a Noetherian RR -module.

(1) MM是一个NoetherianRR模块。

(2) Every nonempty set of submodules of MM contains a maximal element under inclusion.

(2) MM的每一个非空子模块集合都包含一个包含关系下的极大元素。

(3) Every submodule of MM is finitely generated.

(3) MM的每一个子模块都是有限生成的。

Proof: [(1) implies (2)] Assume MM is Noetherian and let \sum be any nonempty collection of submodules of MM . Choose any M1{M}_{1} \in \sum . If M1{M}_{1} is a maximal element of \sum ,(2) holds,so assume M1{M}_{1} is not maximal. Then there is some M2{M}_{2} \in \sum such that M1M2{M}_{1} \subset {M}_{2} . If M2{M}_{2} is maximal in \sum ,(2) holds,so we may assume there is an M3{M}_{3} \in \sum properly containing M2{M}_{2} . Proceeding in this way one sees that if (2) fails we can produce by the Axiom of Choice an infinite strictly increasing chain of elements of \sum ,contrary to (1).

证明:[(1)蕴含(2)] 假设MM是Noetherian的,并且\sumMM的任意非空子模块集合。选择任意的M1{M}_{1} \in \sum。如果M1{M}_{1}\sum的一个极大元素,那么(2)成立,因此假设M1{M}_{1}不是极大元素。那么存在某个M2{M}_{2} \in \sum,使得M1M2{M}_{1} \subset {M}_{2}。如果M2{M}_{2}\sum中是极大的,那么(2)成立,所以我们假设存在一个M3{M}_{3} \in \sum包含M2{M}_{2}。这样继续下去,我们可以看到如果(2)不成立,我们可以通过选择公理产生一个\sum中元素的无限严格递增链,这与(1)相矛盾。

[(2) implies (3)] Assume (2) holds and let NN be any submodule of MM . Let \sum be the collection of all finitely generated submodules of NN . Since {0}\{ 0\} \in \sum ,this collection is nonempty. By (2) \sum contains a maximal element N{N}^{\prime } . If NN{N}^{\prime } \neq N ,let xNNx \in N - {N}^{\prime } . Since N{N}^{\prime } \in \sum ,the submodule N{N}^{\prime } is finitely generated by assumption,hence also the submodule generated by N{N}^{\prime } and xx is finitely generated. This contradicts the maximality of N{N}^{\prime } ,so N=NN = {N}^{\prime } is finitely generated.

[(2) 蕴含 (3)] 假设 (2) 成立,并让 NNMM 的任意子模。令 \sumNN 所有有限生成子模的集合。由于 {0}\{ 0\} \in \sum ,这个集合非空。由 (2) \sum 包含一个极大元素 N{N}^{\prime } 。如果 NN{N}^{\prime } \neq N ,则让 xNNx \in N - {N}^{\prime } 。由于 N{N}^{\prime } \in \sum ,子模 N{N}^{\prime } 是有限生成的(按假设),因此由 N{N}^{\prime }xx 生成的子模也是有限生成的。这违背了 N{N}^{\prime } 的极大性,所以 N=NN = {N}^{\prime } 是有限生成的。

[(3) implies (1)] Assume (3) holds and let M1M2M3{M}_{1} \subseteq {M}_{2} \subseteq {M}_{3}\ldots be a chain of

[(3) 蕴含 (1)] 假设 (3) 成立,并让 M1M2M3{M}_{1} \subseteq {M}_{2} \subseteq {M}_{3}\ldots

submodules of MM . Let

MM 的子模链。令

N=i=1MiN = \mathop{\bigcup }\limits_{{i = 1}}^{\infty }{M}_{i}

and note that NN is a submodule. By (3) NN is finitely generated by,say, a1,a2,,an{a}_{1},{a}_{2},\ldots ,{a}_{n} . Since aiN{a}_{i} \in N for all ii ,each ai{a}_{i} lies in one of the submodules in the chain,say Mji{M}_{{j}_{i}} . Let m=max{j1,j2,,jn}m = \max \left\{ {{j}_{1},{j}_{2},\ldots ,{j}_{n}}\right\} . Then aiMm{a}_{i} \in {M}_{m} for all ii so the module they generate is contained in Mm{M}_{m} ,i.e., NMmN \subseteq {M}_{m} . This implies Mm=N=Mk{M}_{m} = N = {M}_{k} for all kmk \geq m ,which proves (1).

并注意到 NN 是一个子模。由 (3) NN 是有限生成的,比如说,由 a1,a2,,an{a}_{1},{a}_{2},\ldots ,{a}_{n} 生成。由于 aiN{a}_{i} \in N 对于所有 ii ,每个 ai{a}_{i} 都位于链中的某个子模中,比如说 Mji{M}_{{j}_{i}} 。令 m=max{j1,j2,,jn}m = \max \left\{ {{j}_{1},{j}_{2},\ldots ,{j}_{n}}\right\} 。那么 aiMm{a}_{i} \in {M}_{m} 对于所有 ii ,因此它们生成的模包含在 Mm{M}_{m} 中,即 NMmN \subseteq {M}_{m} 。这意味着 Mm=N=Mk{M}_{m} = N = {M}_{k} 对于所有 kmk \geq m ,这证明了 (1)。

Corollary 2. If RR is a P.I.D. then every nonempty set of ideals of RR has a maximal element and RR is a Noetherian ring.

推论 2。如果 RR 是一个 P.I.D.,那么 RR 的每个非空理想集都有一个极大元素,且 RR 是一个诺特环。

Proof: The P.I.D. RR satisfies condition (3) in the theorem with M=RM = R .

证明:P.I.D. RR 满足定理中的条件 (3),其中 M=RM = R

Recall that even if MM itself is a finitely generated RR -module,submodules of MM need not be finitely generated,so the condition that MM be a Noetherian RR -module is in general stronger than the condition that MM be a finitely generated RR -module.

请记住,即使 MM 本身是一个有限生成的 RR -模,MM 的子模也不一定是有限生成的,因此 MM 是一个诺特 RR -模的条件通常比 MM 是一个有限生成的 RR -模的条件更强。

We require a result on "linear dependence" before turning to the main results of this chapter.

在转向本章的主要结果之前,我们需要一个关于“线性相关”的结果。

Proposition 3. Let RR be an integral domain and let MM be a free RR -module of rank n<n < \infty . Then any n+1n + 1 elements of MM are RR -linearly dependent,i.e.,for any y1,y2,,yn+1M{y}_{1},{y}_{2},\ldots ,{y}_{n + 1} \in M there are elements r1,r2,,rn+1R{r}_{1},{r}_{2},\ldots ,{r}_{n + 1} \in R ,not all zero,such that

命题 3. 设 RR 是一个整环,并且 MM 是一个秩为 n<n < \infty 的自由 RR -模。那么,MM 的任何 n+1n + 1 个元素都是 RR -线性相关的,即对于任何 y1,y2,,yn+1M{y}_{1},{y}_{2},\ldots ,{y}_{n + 1} \in M ,都存在元素 r1,r2,,rn+1R{r}_{1},{r}_{2},\ldots ,{r}_{n + 1} \in R ,不全为零,使得

r1y1+r2y2++rn+1yn+1=0.{r}_{1}{y}_{1} + {r}_{2}{y}_{2} + \ldots + {r}_{n + 1}{y}_{n + 1} = 0.

Proof: The quickest way of proving this is to embed RR in its quotient field FF (since RR is an integral domain) and observe that since MRRRM \cong R \oplus R \oplus \cdots \oplus R ( nn times) we obtain MFFFM \subseteq F \oplus F \oplus \cdots \oplus F . The latter is an nn -dimensional vector space over FF so any n+1n + 1 elements of MM are FF -linearly dependent. By clearing the denominators of the scalars (by multiplying through by the product of all the denominators,for example), we obtain an RR -linear dependence relation among the n+1n + 1 elements of MM .

证明:证明这个结论最快的方法是将 RR 嵌入到它的商域 FF 中(因为 RR 是一个整环),并观察到由于 MRRRM \cong R \oplus R \oplus \cdots \oplus Rnn 次),我们得到 MFFFM \subseteq F \oplus F \oplus \cdots \oplus F 。后者是一个 nn 维的 FF 上的向量空间,因此 MM 的任何 n+1n + 1 个元素都是 FF -线性相关的。通过清除系数的分母(例如,通过乘以所有分母的乘积),我们得到 MMn+1n + 1 个元素之间的一个 RR -线性相关关系。

Alternatively,let e1,,en{e}_{1},\ldots ,{e}_{n} be a basis of the free RR -module MM and let y1,,yn+1{y}_{1},\ldots ,{y}_{n + 1} be any n+1n + 1 elements of MM . For 1in+11 \leq i \leq n + 1 write yi=a1iei+a2ie2++aniei{y}_{i} = {a}_{1i}{e}_{i} + {a}_{2i}{e}_{2} + \ldots + {a}_{ni}{e}_{i} in terms of the basis e1,e2,,en{e}_{1},{e}_{2},\ldots ,{e}_{n} . Let AA be the (n+1)×(n+1)\left( {n + 1}\right) \times \left( {n + 1}\right) matrix whose i,ji,j entry is aij,1in,1jn+1{a}_{ij},1 \leq i \leq n,1 \leq j \leq n + 1 and whose last row is zero,so certainly detA=0\det A = 0 . Since RR is an integral domain,Corollary 27 of Section 11.4 shows that the columns of AA are RR -linearly dependent. Any dependence relation on the columns of AA gives a dependence relation on the yi{y}_{i} ’s,completing the proof.

或者,让 e1,,en{e}_{1},\ldots ,{e}_{n} 成为自由 RR -模 MM 的一个基,并且让 y1,,yn+1{y}_{1},\ldots ,{y}_{n + 1}MM 中的任意 n+1n + 1 元素。对于 1in+11 \leq i \leq n + 1,将 yi=a1iei+a2ie2++aniei{y}_{i} = {a}_{1i}{e}_{i} + {a}_{2i}{e}_{2} + \ldots + {a}_{ni}{e}_{i} 用基 e1,e2,,en{e}_{1},{e}_{2},\ldots ,{e}_{n} 表示。让 AA 是一个 (n+1)×(n+1)\left( {n + 1}\right) \times \left( {n + 1}\right) 矩阵,其 i,ji,j 条目是 aij,1in,1jn+1{a}_{ij},1 \leq i \leq n,1 \leq j \leq n + 1,最后一行是零,因此必然 detA=0\det A = 0。由于 RR 是一个整环,第11.4节的推论27表明 AA 的列线性依赖于 RRAA 的列上的任何依赖关系都会在 yi{y}_{i} 上产生依赖关系,从而完成证明。

If RR is any integral domain and MM is any RR -module recall that

如果 RR 是任意的整环,并且 MM 是任意的 RR -模,请记住

Tor(M)={xMrx=0 for some nonzero rR}\operatorname{Tor}\left( M\right) = \{ x \in M \mid {rx} = 0\text{ for some nonzero }r \in R\}

is a submodule of MM (called the torsion submodule of MM ) and if NN is any submodule of Tor(M),N\operatorname{Tor}\left( M\right) ,N is called aa torsion submodule of MM (so the torsion submodule of MM is the union of all torsion submodules of MM ,i.e.,is the maximal torsion submodule of MM ). If Tor(M)=0\operatorname{Tor}\left( M\right) = 0 ,the module MM is said to be torsion free.

MM 的一个子模(称为 MM 的挠子模),如果 NNTor(M),N\operatorname{Tor}\left( M\right) ,N 的一个子模,则称为 aa 的挠子模 MM(因此 MM 的挠子模是所有 MM 的挠子模的并集,即 MM 的最大挠子模)。如果 Tor(M)=0\operatorname{Tor}\left( M\right) = 0,则称模 MM 为挠自由的。

For any submodule NN of MM ,the annihilator of NN is the ideal of RR defined by

对于 MM 的任一子模 NNNN 的消去子是 RR 的理想,由

Ann(N)={rRrn=0 for all nN}.\operatorname{Ann}\left( N\right) = \{ r \in R \mid {rn} = 0\text{ for all }n \in N\} .

Note that if NN is not a torsion submodule of MM then Ann(N)=(0)\operatorname{Ann}\left( N\right) = \left( 0\right) . It is easy to see that if N,LN,L are submodules of MM with NLN \subseteq L ,then Ann(L)Ann(N)\operatorname{Ann}\left( L\right) \subseteq \operatorname{Ann}\left( N\right) . If RR is a P.I.D. and NLMN \subseteq L \subseteq M with Ann(N)=(a)\operatorname{Ann}\left( N\right) = \left( a\right) and Ann(L)=(b)\operatorname{Ann}\left( L\right) = \left( b\right) ,then aba \mid b . In particular, the annihilator of any element xx of MM divides the annihilator of MM (this is implied by Lagrange’s Theorem when R=ZR = \mathbb{Z} ).

注意,如果 NN 不是 MM 的挠子模,那么 Ann(N)=(0)\operatorname{Ann}\left( N\right) = \left( 0\right) 。容易看出,如果 N,LN,LMM 的子模,并且 NLN \subseteq L ,那么 Ann(L)Ann(N)\operatorname{Ann}\left( L\right) \subseteq \operatorname{Ann}\left( N\right) 。如果 RR 是一个P.I.D.且 NLMN \subseteq L \subseteq M ,其中 Ann(N)=(a)\operatorname{Ann}\left( N\right) = \left( a\right)Ann(L)=(b)\operatorname{Ann}\left( L\right) = \left( b\right) ,那么 aba \mid b 。特别是,任何元素 xx 的消去子模 MM 都整除 MM 的消去子模(这在 R=ZR = \mathbb{Z} 时由拉格朗日定理隐含)。

Definition. For any integral domain RR the rank of an RR -module MM is the maximum number of RR -linearly independent elements of MM .

定义。对于任何整环 RR ,一个 RR -模 MM 的秩是 MMRR -线性无关元素的最大数量。

The preceding proposition states that for a free RR -module MM over an integral domain the rank of a submodule is bounded by the rank of MM . This notion of rank agrees with previous uses of the same term. If the ring R=FR = F is a field,then the rank of an RR -module MM is the dimension of MM as a vector space over FF and any maximal set of FF -linearly independent elements is a basis for MM . For a general integral domain, however,an RR -module MM of rank nn need not have a "basis," i.e.,need not be a free RR -module even if MM is torsion free,so some care is necessary with the notion of rank, particularly with respect to the torsion elements of MM . Exercises 1 to 6 and 20 give an alternate characterization of the rank and provide some examples of (torsion free) RR -modules (of rank 1) that are not free.

前一个命题表明,对于一个在整环上的自由 RR -模 MM ,子模的秩受限于 MM 的秩。这个秩的概念与之前使用该术语时一致。如果环 R=FR = F 是一个域,那么 RR -模 MM 的秩就是 MM 作为 FF 上的向量空间的维数,任何 FF -线性无关的元素的最大集合都是 MM 的基。然而,对于一般的整环,一个秩为 nnRR -模 MM 不一定有“基”,即即使 MM 是挠自由的,也不一定是自由 RR -模,因此在秩的概念上需要格外小心,特别是关于 MM 的挠元素。练习 1 到 6 和 20 提供了秩的另一种表征,并给出了一些(挠自由)RR -模(秩为 1)不是自由的例子。

The next important result shows that if NN is a submodule of a free module of finite rank over a P.I.D. then NN is again a free module of finite rank and furthermore it is possible to choose generators for the two modules which are related in a simple way.

下一个重要结果表明,如果 NN 是一个主理想整环上的有限秩自由模的子模,那么 NN 本身也是一个有限秩的自由模,并且可以选择两个模的生成元,它们之间有简单的关系。

Theorem 4. Let RR be a Principal Ideal Domain,let MM be a free RR -module of finite rank nn and let NN be a submodule of MM . Then

定理 4。设 RR 是一个主理想整环,MM 是一个秩为 nn 的自由 RR -模,NNMM 的子模。

(1) NN is free of rank m,mnm,m \leq n and

(1)NN 是秩为 m,mnm,m \leq n 的自由模,并且

(2) there exists a basis y1,y2,,yn{y}_{1},{y}_{2},\ldots ,{y}_{n} of MM so that a1y1,a2y2,,amym{a}_{1}{y}_{1},{a}_{2}{y}_{2},\ldots ,{a}_{m}{y}_{m} is a basis of NN where a1,a2,,am{a}_{1},{a}_{2},\ldots ,{a}_{m} are nonzero elements of RR with the divisibility relations

存在一个基 y1,y2,,yn{y}_{1},{y}_{2},\ldots ,{y}_{n}MM ,使得 a1y1,a2y2,,amym{a}_{1}{y}_{1},{a}_{2}{y}_{2},\ldots ,{a}_{m}{y}_{m}NN 的基,其中 a1,a2,,am{a}_{1},{a}_{2},\ldots ,{a}_{m}RR 的非零元素,具有可整除性关系

a1a2am.{a}_{1}\left| {a}_{2}\right| \cdots \mid {a}_{m}.

Proof: The theorem is trivial for N={0}N = \{ 0\} ,so assume N{0}N \neq \{ 0\} . For each RR -module homomorphism φ\varphi of MM into RR ,the image φ(N)\varphi \left( N\right) of NN is a submodule of RR ,i.e.,an ideal in RR . Since RR is a P.I.D. this ideal must be principal,say φ(N)=(aφ)\varphi \left( N\right) = \left( {a}_{\varphi }\right) ,for some aφR{a}_{\varphi } \in R . Let

证明:当 N={0}N = \{ 0\} 时定理是平凡的,所以假设 N{0}N \neq \{ 0\} 。对于每个 RR -模同态 φ\varphiMMRRφ(N)\varphi \left( N\right) 的像 NNRR 的子模,即 RR 的一个理想。由于 RR 是一个P.I.D.,这个理想必须是主理想,比如说 φ(N)=(aφ)\varphi \left( N\right) = \left( {a}_{\varphi }\right) ,对于某个 aφR{a}_{\varphi } \in R 。设

={(aφ)φHomR(M,R)}\sum = \left\{ {\left( {a}_{\varphi }\right) \mid \varphi \in {\operatorname{Hom}}_{R}\left( {M,R}\right) }\right\}

be the collection of the principal ideals in RR obtained in this way from the RR -module homomorphisms of MM into RR . The collection \sum is certainly nonempty since taking φ\varphi to be the trivial homomorphism shows that (0)\left( 0\right) \in \sum . By Corollary 2, \sum has at least one maximal element i.e.,there is at least one homomorphism vv of MM to RR so that the principal ideal v(N)=(av)v\left( N\right) = \left( {a}_{v}\right) is not properly contained in any other element of \sum . Let a1=av{a}_{1} = {a}_{v} for this maximal element and let yNy \in N be an element mapping to the generator a1{a}_{1} under the homomorphism v:v(y)=a1v : v\left( y\right) = {a}_{1} .

是通过这种方式从 RR -模同态从 MMRR 得到的 RR 的主理想的集合。这个集合 \sum 显然是非空的,因为取 φ\varphi 为平凡同态就表明 (0)\left( 0\right) \in \sum 。根据推论2,\sum 至少有一个极大元素,即至少有一个同态 vvMMRR ,使得主理想 v(N)=(av)v\left( N\right) = \left( {a}_{v}\right) 不被 \sum 的任何其他元素真包含。设 a1=av{a}_{1} = {a}_{v} 为这个极大元素,并设 yNy \in N 是在同态 v:v(y)=a1v : v\left( y\right) = {a}_{1} 下映射到生成元 a1{a}_{1} 的元素。

We now show the element a1{a}_{1} is nonzero. Let x1,x2,,xn{x}_{1},{x}_{2},\ldots ,{x}_{n} be any basis of the free module MM and let πiHomR(M,R){\pi }_{i} \in {\operatorname{Hom}}_{R}\left( {M,R}\right) be the natural projection homomorphism onto the ith {i}^{\text{th }} coordinate with respect to this basis. Since N{0}N \neq \{ 0\} ,there exists an ii such that πi(N)0{\pi }_{i}\left( N\right) \neq 0 ,which in particular shows that \sum contains more than just the trivial ideal (0). Since (a1)\left( {a}_{1}\right) is a maximal element of \sum it follows that a10{a}_{1} \neq 0 .

现在我们展示元素 a1{a}_{1} 是非零的。设 x1,x2,,xn{x}_{1},{x}_{2},\ldots ,{x}_{n} 是自由模块 MM 的任意基,πiHomR(M,R){\pi }_{i} \in {\operatorname{Hom}}_{R}\left( {M,R}\right) 是到该基的 ith {i}^{\text{th }} 坐标上的自然投影同态。由于 N{0}N \neq \{ 0\} ,存在一个 ii 使得 πi(N)0{\pi }_{i}\left( N\right) \neq 0 ,这特别表明 \sum 包含的不仅仅是平凡理想 (0)。由于 (a1)\left( {a}_{1}\right)\sum 的一个极大元,因此 a10{a}_{1} \neq 0

We next show that this element a1{a}_{1} divides φ(y)\varphi \left( y\right) for every φHomR(M,R)\varphi \in {\operatorname{Hom}}_{R}\left( {M,R}\right) . To see this let dd be a generator for the principal ideal generated by a1{a}_{1} and φ(y)\varphi \left( y\right) . Then dd is a divisor of both a1{a}_{1} and φ(y)\varphi \left( y\right) in RR and d=r1a1+r2φ(y)d = {r}_{1}{a}_{1} + {r}_{2}\varphi \left( y\right) for some r1,r2R{r}_{1},{r}_{2} \in R . Consider the homomorphism ψ=r1v+r2φ\psi = {r}_{1}v + {r}_{2}\varphi from MM to RR . Then ψ(y)=(r1v+r2φ)(y)=\psi \left( y\right) = \left( {{r}_{1}v + {r}_{2}\varphi }\right) \left( y\right) = r1a1+r2φ(y)=d{r}_{1}{a}_{1} + {r}_{2}\varphi \left( y\right) = d so that dψ(N)d \in \psi \left( N\right) ,hence also (d)ψ(N)\left( d\right) \subseteq \psi \left( N\right) . But dd is a divisor of a1{a}_{1} so we also have (a1)(d)\left( {a}_{1}\right) \subseteq \left( d\right) . Then (a1)(d)ψ(N)\left( {a}_{1}\right) \subseteq \left( d\right) \subseteq \psi \left( N\right) and by the maximality of (a1)\left( {a}_{1}\right) we must have equality: (a1)=(d)=ψ(N)\left( {a}_{1}\right) = \left( d\right) = \psi \left( N\right) . In particular (a1)=(d)\left( {a}_{1}\right) = \left( d\right) shows that a1φ(y){a}_{1} \mid \varphi \left( y\right) since dd divides φ(y)\varphi \left( y\right) .

接下来我们展示这个元素 a1{a}_{1} 能整除 φ(y)\varphi \left( y\right) 对于每一个 φHomR(M,R)\varphi \in {\operatorname{Hom}}_{R}\left( {M,R}\right) 。为了看到这一点,设 dd 是由 a1{a}_{1}φ(y)\varphi \left( y\right) 生成的主理想的生成元。那么 ddRRa1{a}_{1}φ(y)\varphi \left( y\right) 的一个除数,并且 d=r1a1+r2φ(y)d = {r}_{1}{a}_{1} + {r}_{2}\varphi \left( y\right) 对于某个 r1,r2R{r}_{1},{r}_{2} \in R 。考虑从 MMRR 的同态 ψ=r1v+r2φ\psi = {r}_{1}v + {r}_{2}\varphi 。那么 ψ(y)=(r1v+r2φ)(y)=\psi \left( y\right) = \left( {{r}_{1}v + {r}_{2}\varphi }\right) \left( y\right) = r1a1+r2φ(y)=d{r}_{1}{a}_{1} + {r}_{2}\varphi \left( y\right) = d 因此 dψ(N)d \in \psi \left( N\right) ,因此也有 (d)ψ(N)\left( d\right) \subseteq \psi \left( N\right) 。但是 dda1{a}_{1} 的一个除数,所以我们也有 (a1)(d)\left( {a}_{1}\right) \subseteq \left( d\right) 。那么 (a1)(d)ψ(N)\left( {a}_{1}\right) \subseteq \left( d\right) \subseteq \psi \left( N\right) 并且由于 (a1)\left( {a}_{1}\right) 的极大性,我们必须有等式:(a1)=(d)=ψ(N)\left( {a}_{1}\right) = \left( d\right) = \psi \left( N\right) 。特别地 (a1)=(d)\left( {a}_{1}\right) = \left( d\right) 表明 a1φ(y){a}_{1} \mid \varphi \left( y\right) ,因为 dd 能整除 φ(y)\varphi \left( y\right)

If we apply this to the projection homomorphisms πi{\pi }_{i} we see that a1{a}_{1} divides πi(y){\pi }_{i}\left( y\right) for all ii . Write πi(y)=a1bi{\pi }_{i}\left( y\right) = {a}_{1}{b}_{i} for some biR,1in{b}_{i} \in R,1 \leq i \leq n and define

如果我们将这应用于投影同态 πi{\pi }_{i} ,我们会看到 a1{a}_{1} 能整除 πi(y){\pi }_{i}\left( y\right) 对于所有的 ii 。对于某个 biR,1in{b}_{i} \in R,1 \leq i \leq nπi(y)=a1bi{\pi }_{i}\left( y\right) = {a}_{1}{b}_{i} 并定义

y1=i=1nbixi{y}_{1} = \mathop{\sum }\limits_{{i = 1}}^{n}{b}_{i}{x}_{i}

Note that a1y1=y{a}_{1}{y}_{1} = y . Since a1=v(y)=v(a1y1)=a1v(y1){a}_{1} = v\left( y\right) = v\left( {{a}_{1}{y}_{1}}\right) = {a}_{1}v\left( {y}_{1}\right) and a1{a}_{1} is a nonzero element of the integral domain RR this shows

注意 a1y1=y{a}_{1}{y}_{1} = y 。由于 a1=v(y)=v(a1y1)=a1v(y1){a}_{1} = v\left( y\right) = v\left( {{a}_{1}{y}_{1}}\right) = {a}_{1}v\left( {y}_{1}\right) 并且 a1{a}_{1} 是整环 RR 的一个非零元素,这表明

v(y1)=1v\left( {y}_{1}\right) = 1

We now verify that this element y1{y}_{1} can be taken as one element in a basis for MM and that a1y1{a}_{1}{y}_{1} can be taken as one element in a basis for NN ,namely that we have (a) M=Ry1kervM = R{y}_{1} \oplus \ker v ,and

我们现在验证这个元素 y1{y}_{1} 可以作为一个基 MM 的一个元素,并且 a1y1{a}_{1}{y}_{1} 可以作为基 NN 的一个元素,即我们具有 (a) M=Ry1kervM = R{y}_{1} \oplus \ker v,并且

(b) N=Ra1y1(Nkerv)N = R{a}_{1}{y}_{1} \oplus \left( {N \cap \ker v}\right) .

(b) N=Ra1y1(Nkerv)N = R{a}_{1}{y}_{1} \oplus \left( {N \cap \ker v}\right)

To see (a) let xx be an arbitrary element in MM and write x=v(x)y1+(xv(x)y1)x = v\left( x\right) {y}_{1} + \left( {x - v\left( x\right) {y}_{1}}\right) . Since

为了看到 (a),设 xxMM 中的一个任意元素,并写成 x=v(x)y1+(xv(x)y1)x = v\left( x\right) {y}_{1} + \left( {x - v\left( x\right) {y}_{1}}\right)。由于

v(xv(x)y1)=v(x)v(x)v(y1)v\left( {x - v\left( x\right) {y}_{1}}\right) = v\left( x\right) - v\left( x\right) v\left( {y}_{1}\right)
=v(x)v(x)1= v\left( x\right) - v\left( x\right) \cdot 1
.=0\text{.} = 0

we see that xv(x)y1x - v\left( x\right) {y}_{1} is an element in the kernel of vv . This shows that xx can be written as the sum of an element in Ry1R{y}_{1} and an element in the kernel of vv ,so M=Ry1+kervM = R{y}_{1} + \ker v . To see that the sum is direct,suppose ry1r{y}_{1} is also an element in the kernel of vv . Then 0=v(ry1)=rv(y1)=r0 = v\left( {r{y}_{1}}\right) = {rv}\left( {y}_{1}\right) = r shows that this element is indeed 0 .

我们看到 xv(x)y1x - v\left( x\right) {y}_{1}vv 的核中的一个元素。这表明 xx 可以写成 Ry1R{y}_{1} 中的一个元素与 vv 的核中的一个元素的和,所以 M=Ry1+kervM = R{y}_{1} + \ker v。为了看到这个和是直接的,假设 ry1r{y}_{1} 也是 vv 的核中的一个元素。那么 0=v(ry1)=rv(y1)=r0 = v\left( {r{y}_{1}}\right) = {rv}\left( {y}_{1}\right) = r 显示这个元素确实是0。

For (b) observe that v(x)v\left( {x}^{\prime }\right) is divisible by a1{a}_{1} for every xN{x}^{\prime } \in N by the definition of a1{a}_{1} as a generator for v(N)v\left( N\right) . If we write v(x)=ba1v\left( {x}^{\prime }\right) = b{a}_{1} where bRb \in R then the decomposition we used in (a) above is x=v(x)y1+(xv(x)y1)=ba1y1+(xba1y1){x}^{\prime } = v\left( {x}^{\prime }\right) {y}_{1} + \left( {{x}^{\prime } - v\left( {x}^{\prime }\right) {y}_{1}}\right) = b{a}_{1}{y}_{1} + \left( {{x}^{\prime } - b{a}_{1}{y}_{1}}\right) where the second summand is in the kernel of vv and is an element of NN . This shows that N=Ra1y1+(Nkerv)N = R{a}_{1}{y}_{1} + \left( {N \cap \ker v}\right) . The fact that the sum in (b) is direct is a special case of the directness of the sum in (a).

对于 (b),观察到根据 a1{a}_{1} 作为 v(N)v\left( N\right) 的生成元的定义,v(x)v\left( {x}^{\prime }\right) 可以被 a1{a}_{1} 整除对每个 xN{x}^{\prime } \in N。如果我们写成 v(x)=ba1v\left( {x}^{\prime }\right) = b{a}_{1},其中 bRb \in R,那么我们在 (a) 中使用的分解是 x=v(x)y1+(xv(x)y1)=ba1y1+(xba1y1){x}^{\prime } = v\left( {x}^{\prime }\right) {y}_{1} + \left( {{x}^{\prime } - v\left( {x}^{\prime }\right) {y}_{1}}\right) = b{a}_{1}{y}_{1} + \left( {{x}^{\prime } - b{a}_{1}{y}_{1}}\right),其中第二个加项在 vv 的核中,并且是 NN 的一个元素。这表明 N=Ra1y1+(Nkerv)N = R{a}_{1}{y}_{1} + \left( {N \cap \ker v}\right)。(b) 中的和是直接的是一个 a1{a}_{1} 中和的直接性的特殊情况。

We now prove part (1) of the theorem by induction on the rank, mm ,of NN . If m=0m = 0 , then NN is a torsion module,hence N=0N = 0 since a free module is torsion free,so (1) holds trivially. Assume then that m>0m > 0 . Since the sum in (b) above is direct we see easily that NkervN \cap \ker v has rank m1m - 1 (cf. Exercise 3). By induction NkervN \cap \ker v is then a free RR -module of rank m1m - 1 . Again by the directness of the sum in (b) we see that adjoining a1y1{a}_{1}{y}_{1} to any basis of NkervN \cap \ker v gives a basis of NN ,so NN is also free (of rank mm ),which proves (1).

我们现在通过归纳法证明定理的第一部分,对mm的秩NN进行归纳。如果m=0m = 0,那么NN是一个挠模,因此N=0N = 0,因为自由模是无挠的,所以(1)显然成立。假设m>0m > 0。由于上面(b)中的和是直和,我们可以容易地看出NkervN \cap \ker v的秩为m1m - 1(参见练习3)。通过归纳,NkervN \cap \ker v然后是一个秩为m1m - 1的自由RR模。再次由于(b)中的和是直和,我们看出将a1y1{a}_{1}{y}_{1}添加到NkervN \cap \ker v的任何基中都会得到NN的一个基,所以NN也是自由的(秩为mm),这证明了(1)。

Finally,we prove (2) by induction on nn ,the rank of MM . Applying (1) to the submodule ker ν\nu shows that this submodule is free and because the sum in (a) is direct it is free of rank n1n - 1 . By the induction assumption applied to the module ker vv (which plays the role of MM ) and its submodule kervN\ker v \cap N (which plays the role of NN ),we see that there is a basis y2,y3,,yn{y}_{2},{y}_{3},\ldots ,{y}_{n} of kerv\ker v such that a2y2,a3y3,,amym{a}_{2}{y}_{2},{a}_{3}{y}_{3},\ldots ,{a}_{m}{y}_{m} is a basis of NkervN \cap \ker v for some elements a2,a3,,am{a}_{2},{a}_{3},\ldots ,{a}_{m} of RR with a2a3am{a}_{2}\left| {a}_{3}\right| \cdots \mid {a}_{m} . Since the sums (a) and (b) are direct, y1,y2,,yn{y}_{1},{y}_{2},\ldots ,{y}_{n} is a basis of MM and a1y1,a2y2,,amym{a}_{1}{y}_{1},{a}_{2}{y}_{2},\ldots ,{a}_{m}{y}_{m} is a basis of NN . To complete the induction it remains to show that a1{a}_{1} divides a2{a}_{2} . Define a homomorphism φ\varphi from MM to RR by defining φ(y1)=φ(y2)=1\varphi \left( {y}_{1}\right) = \varphi \left( {y}_{2}\right) = 1 and φ(yi)=0\varphi \left( {y}_{i}\right) = 0 ,for all i>2i > 2 ,on the basis for MM . Then for this homomorphism φ\varphi we have a1=φ(a1y1){a}_{1} = \varphi \left( {{a}_{1}{y}_{1}}\right) so a1φ(N){a}_{1} \in \varphi \left( N\right) hence also (a1)φ(N)\left( {a}_{1}\right) \subseteq \varphi \left( N\right) . By the maximality of (a1)\left( {a}_{1}\right) in \sum it follows that (a1)=φ(N)\left( {a}_{1}\right) = \varphi \left( N\right) . Since a2=φ(a2y2)φ(N){a}_{2} = \varphi \left( {{a}_{2}{y}_{2}}\right) \in \varphi \left( N\right) we then have a2(a1){a}_{2} \in \left( {a}_{1}\right) i.e., a1a2{a}_{1} \mid {a}_{2} . This completes the proof of the theorem.

最后,我们通过对 nn 进行归纳,即对 MM 的秩进行归纳,来证明 (2)。将 (1) 应用于子模块 ker ν\nu,表明这个子模块是自由的,并且因为 (a) 中的和是直接的,所以它的秩为 n1n - 1 的自由。通过对模块 ker vv(它扮演 MM 的角色)及其子模块 kervN\ker v \cap N(它扮演 NN 的角色)应用归纳假设,我们发现存在 y2,y3,,yn{y}_{2},{y}_{3},\ldots ,{y}_{n} 的一个基 kerv\ker v,使得 a2y2,a3y3,,amym{a}_{2}{y}_{2},{a}_{3}{y}_{3},\ldots ,{a}_{m}{y}_{m}NkervN \cap \ker v 对于某些 a2,a3,,am{a}_{2},{a}_{3},\ldots ,{a}_{m} 的元素 RR 的基,且 a2a3am{a}_{2}\left| {a}_{3}\right| \cdots \mid {a}_{m} 。由于和 (a) 和 (b) 是直接的,y1,y2,,yn{y}_{1},{y}_{2},\ldots ,{y}_{n}MM 的基,a1y1,a2y2,,amym{a}_{1}{y}_{1},{a}_{2}{y}_{2},\ldots ,{a}_{m}{y}_{m}NN 的基。为了完成归纳,还需要证明 a1{a}_{1}a2{a}_{2} 。定义一个从 MMRR 的同态 φ\varphi,通过在 MM 的基上定义 φ(y1)=φ(y2)=1\varphi \left( {y}_{1}\right) = \varphi \left( {y}_{2}\right) = 1φ(yi)=0\varphi \left( {y}_{i}\right) = 0 ,对于所有的 i>2i > 2 。那么对于这个同态 φ\varphi,我们有 a1=φ(a1y1){a}_{1} = \varphi \left( {{a}_{1}{y}_{1}}\right),因此 a1φ(N){a}_{1} \in \varphi \left( N\right),进而也有 (a1)φ(N)\left( {a}_{1}\right) \subseteq \varphi \left( N\right)。由于 (a1)\left( {a}_{1}\right)\sum 中是最大的,因此得出 (a1)=φ(N)\left( {a}_{1}\right) = \varphi \left( N\right)。由于 a2=φ(a2y2)φ(N){a}_{2} = \varphi \left( {{a}_{2}{y}_{2}}\right) \in \varphi \left( N\right),然后我们有 a2(a1){a}_{2} \in \left( {a}_{1}\right),即 a1a2{a}_{1} \mid {a}_{2}。这完成了定理的证明。

Recall that the left RR -module CC is a cyclic RR -module (for any ring RR ,not necessarily commutative nor with 1) if there is an element xCx \in C such that C=RxC = {Rx} . We can then define an RR -module homomorphism

回顾一下,左 RR -模 CC 是一个循环 RR -模(对于任何环 RR ,不一定是交换的也不一定带有单位元),如果存在一个元素 xCx \in C 使得 C=RxC = {Rx} 。然后我们可以定义一个 RR -模同态

π:RC\pi : R \rightarrow C

by π(r)=rx\pi \left( r\right) = {rx} ,which will be surjective by the assumption C=RxC = {Rx} . The First Isomorphism Theorem gives an isomorphism of (left) RR -modules

通过 π(r)=rx\pi \left( r\right) = {rx} ,在假设 C=RxC = {Rx} 下这将是一个满射。第一同构定理给出了(左)RR -模的同构

R/kerπC.R/\ker \pi \cong C\text{.}

If RR is a P.I.D.,ker π\pi is a principal ideal,(a),so we see that the cyclic RR -modules CC are of the form R/(a)R/\left( a\right) where (a)=Ann(C)\left( a\right) = \operatorname{Ann}\left( C\right) .

如果 RR 是一个P.I.D.,那么ker π\pi 是一个主理想,(a),所以我们看到循环 RR -模 CC 的形式为 R/(a)R/\left( a\right) ,其中 (a)=Ann(C)\left( a\right) = \operatorname{Ann}\left( C\right)

The cyclic modules are the simplest modules (since they require only one generator). The existence portion of the Fundamental Theorem states that any finitely generated module over a P.I.D. is isomorphic to the direct sum of finitely many cyclic modules.

循环模是最简单的模(因为它们只需要一个生成元)。基本定理的存在部分指出,任何在P.I.D.上的有限生成模都与有限多个循环模的直接和同构。

Theorem 5. (Fundamental Theorem,Existence: Invariant Factor Form) Let RR be a P.I.D. and let MM be a finitely generated RR -module.

定理5.(基本定理,存在性:不变因子形式)设 RR 是一个P.I.D.,MM 是一个有限生成的 RR -模。

(1) Then MM is isomorphic to the direct sum of finitely many cyclic modules. More precisely,

(1)那么 MM 与有限多个循环模的直接和同构。更准确地说,

MRrR/(a1)R/(a2)R/(am)M \cong {R}^{r} \oplus R/\left( {a}_{1}\right) \oplus R/\left( {a}_{2}\right) \oplus \cdots \oplus R/\left( {a}_{m}\right)

for some integer r0r \geq 0 and nonzero elements a1,a2,,am{a}_{1},{a}_{2},\ldots ,{a}_{m} of RR which are not units in RR and which satisfy the divisibility relations

对于某些整数 r0r \geq 0RR 中的非零元素 a1,a2,,am{a}_{1},{a}_{2},\ldots ,{a}_{m} ,这些元素不是 RR 中的单位元,并且满足可除性关系

a1a2am.{a}_{1}\left| {a}_{2}\right| \cdots \mid {a}_{m}.

(2) MM is torsion free if and only if MM is free.

(2)MM 是扭自由的当且仅当 MM 是自由的。

(3) In the decomposition in (1),

(3)在(1)中的分解中,

Tor(M)R/(a1)R/(a2)R/(am).\operatorname{Tor}\left( M\right) \cong R/\left( {a}_{1}\right) \oplus R/\left( {a}_{2}\right) \oplus \cdots \oplus R/\left( {a}_{m}\right) .

In particular MM is a torsion module if and only if r=0r = 0 and in this case the annihilator of MM is the ideal (am)\left( {a}_{m}\right) .

特别地,MM 是一个扭模当且仅当 r=0r = 0 ,在这种情况下,MM 的消灭理想是理想 (am)\left( {a}_{m}\right)

Proof: The module MM can be generated by a finite set of elements by assumption so let x1,x2,,xn{x}_{1},{x}_{2},\ldots ,{x}_{n} be a set of generators of MM of minimal cardinality. Let Rn{R}^{n} be the free RR -module of rank nn with basis b1,b2,,bn{b}_{1},{b}_{2},\ldots ,{b}_{n} and define the homomorphism π:RnM\pi : {R}^{n} \rightarrow M by defining π(bi)=xi\pi \left( {b}_{i}\right) = {x}_{i} for all ii ,which is automatically surjective since x1,,xn{x}_{1},\ldots ,{x}_{n} generate MM . By the First Isomorphism Theorem for modules we have Rn/kerπM{R}^{n}/\ker \pi \cong M . Now,by Theorem 4 applied to Rn{R}^{n} and the submodule ker π\pi we can choose another basis y1,y2,,yn{y}_{1},{y}_{2},\ldots ,{y}_{n} of Rn{R}^{n} so that a1y1,a2y2,,amym{a}_{1}{y}_{1},{a}_{2}{y}_{2},\ldots ,{a}_{m}{y}_{m} is a basis of kerπ\ker \pi for some elements a1,a2,,am{a}_{1},{a}_{2},\ldots ,{a}_{m} of RR with a1a2am{a}_{1}\left| {a}_{2}\right| \cdots \mid {a}_{m} . This implies

证明:根据假设,模块 MM 可以由有限个元素生成,设 x1,x2,,xn{x}_{1},{x}_{2},\ldots ,{x}_{n}MM 的生成元集合,其基数最小。令 Rn{R}^{n} 为自由 RR -模块,秩为 nn,基为 b1,b2,,bn{b}_{1},{b}_{2},\ldots ,{b}_{n},并定义同态 π:RnM\pi : {R}^{n} \rightarrow M,通过定义 π(bi)=xi\pi \left( {b}_{i}\right) = {x}_{i} 对于所有 ii,这自然是满射,因为 x1,,xn{x}_{1},\ldots ,{x}_{n} 生成 MM。根据模的第一同构定理,我们有 Rn/kerπM{R}^{n}/\ker \pi \cong M。现在,将定理4应用于 Rn{R}^{n} 和子模 ker π\pi,我们可以选择 Rn{R}^{n} 的另一个基 y1,y2,,yn{y}_{1},{y}_{2},\ldots ,{y}_{n},使得 a1y1,a2y2,,amym{a}_{1}{y}_{1},{a}_{2}{y}_{2},\ldots ,{a}_{m}{y}_{m} 对于某些 RR 中的元素 a1,a2,,am{a}_{1},{a}_{2},\ldots ,{a}_{m}a1a2am{a}_{1}\left| {a}_{2}\right| \cdots \mid {a}_{m}kerπ\ker \pi 的基。这意味着

MRn/kerπ=(Ry1Ry2Ryn)/(Ra1y1Ra2y2Ramym).M \cong {R}^{n}/\ker \pi = \left( {R{y}_{1} \oplus R{y}_{2} \oplus \cdot \cdot \cdot \oplus R{y}_{n}}\right) /\left( {R{a}_{1}{y}_{1} \oplus R{a}_{2}{y}_{2} \oplus \cdot \cdot \cdot \oplus R{a}_{m}{y}_{m}}\right) .

To identify the quotient on the right hand side we use the natural surjective RR -module homomorphism

为了确定右侧商,我们使用自然的满射 RR -模块同态

Ry1Ry2RynR/(a1)R/(a2)R/(am)RnmR{y}_{1} \oplus R{y}_{2} \oplus \cdots \oplus R{y}_{n} \rightarrow R/\left( {a}_{1}\right) \oplus R/\left( {a}_{2}\right) \oplus \cdots \oplus R/\left( {a}_{m}\right) \oplus {R}^{n - m}

that maps (α1y1,,αnyn)\left( {{\alpha }_{1}{y}_{1},\ldots ,{\alpha }_{n}{y}_{n}}\right) to (α1  mod  (a1),,αm  mod  (am),αm+1,,αn)\left( {{\alpha }_{1}{\;\operatorname{mod}\;\left( {a}_{1}\right) },\ldots ,{\alpha }_{m}{\;\operatorname{mod}\;\left( {a}_{m}\right) },{\alpha }_{m + 1},\ldots ,{\alpha }_{n}}\right) . The kernel of this map is clearly the set of elements where ai{a}_{i} divides αi,i=1,2,,m{\alpha }_{i},i = 1,2,\ldots ,m , i.e., Ra1y1Ra2y2RamymR{a}_{1}{y}_{1} \oplus R{a}_{2}{y}_{2} \oplus \cdots \oplus R{a}_{m}{y}_{m} (cf. Exercise 7). Hence we obtain

它将 (α1y1,,αnyn)\left( {{\alpha }_{1}{y}_{1},\ldots ,{\alpha }_{n}{y}_{n}}\right) 映射到 (α1  mod  (a1),,αm  mod  (am),αm+1,,αn)\left( {{\alpha }_{1}{\;\operatorname{mod}\;\left( {a}_{1}\right) },\ldots ,{\alpha }_{m}{\;\operatorname{mod}\;\left( {a}_{m}\right) },{\alpha }_{m + 1},\ldots ,{\alpha }_{n}}\right)。这个映射的核显然是元素集合,其中 ai{a}_{i}αi,i=1,2,,m{\alpha }_{i},i = 1,2,\ldots ,m,即 Ra1y1Ra2y2RamymR{a}_{1}{y}_{1} \oplus R{a}_{2}{y}_{2} \oplus \cdots \oplus R{a}_{m}{y}_{m}(参见练习7)。因此我们得到

MR/(a1)R/(a2)R/(am)Rnm.M \cong R/\left( {a}_{1}\right) \oplus R/\left( {a}_{2}\right) \oplus \cdots \oplus R/\left( {a}_{m}\right) \oplus {R}^{n - m}.

If aa is a unit in RR then R/(a)=0R/\left( a\right) = 0 ,so in this direct sum we may remove any of the initial ai{a}_{i} which are units. This gives the decomposition in (1) (with r=nmr = n - m ).

如果 aaRR 中的单位元,那么 R/(a)=0R/\left( a\right) = 0,因此在这个直和中,我们可以移除任何初始的 ai{a}_{i} 单位元。这给出了(1)中的分解(带有 r=nmr = n - m)。

Since R/(a)R/\left( a\right) is a torsion RR -module for any nonzero element aa of R,(1)R,\left( 1\right) immediately implies MM is a torsion free module if and only if MRrM \cong {R}^{r} ,which is (2). Part (3) is immediate from the definitions since the annihilator of R/(a)R/\left( a\right) is evidently the ideal(a).

由于 R/(a)R/\left( a\right) 是扭 RR -模块,对于任何非零元素 aaR,(1)R,\left( 1\right),立即意味着 MM 是一个无扭模块当且仅当 MRrM \cong {R}^{r},这是(2)。部分(3)根据定义立即得出,因为 R/(a)R/\left( a\right) 的消去子显然是理想(a)。

We shall shortly prove the uniqueness of the decomposition in Theorem 5, namely that if we have

We shall shortly prove the uniqueness of the decomposition in Theorem 5, namely that if we have

MRrR/(b1)R/(b2)R/(bm)M \cong {R}^{{r}^{\prime }} \oplus R/\left( {b}_{1}\right) \oplus R/\left( {b}_{2}\right) \oplus \cdots \oplus R/\left( {b}_{{m}^{\prime }}\right)

for some integer r0{r}^{\prime } \geq 0 and nonzero elements b1,b2,,bm{b}_{1},{b}_{2},\ldots ,{b}_{{m}^{\prime }} of RR which are not units with

for some integer r0{r}^{\prime } \geq 0 and nonzero elements b1,b2,,bm{b}_{1},{b}_{2},\ldots ,{b}_{{m}^{\prime }} of RR which are not units with

b1b2bm,{b}_{1}\left| {b}_{2}\right| \cdots \mid {b}_{{m}^{\prime }},

then r=r,m=mr = {r}^{\prime },m = {m}^{\prime } and (ai)=(bi)\left( {a}_{i}\right) = \left( {b}_{i}\right) (so ai=bi{a}_{i} = {b}_{i} up to units) for all ii . It is precisely the divisibility condition a1a2am{a}_{1}\left| {a}_{2}\right| \cdots \mid {a}_{m} which gives this uniqueness.

then r=r,m=mr = {r}^{\prime },m = {m}^{\prime } and (ai)=(bi)\left( {a}_{i}\right) = \left( {b}_{i}\right) (so ai=bi{a}_{i} = {b}_{i} up to units) for all ii . It is precisely the divisibility condition a1a2am{a}_{1}\left| {a}_{2}\right| \cdots \mid {a}_{m} which gives this uniqueness.

Definition. The integer rr in Theorem 5 is called the free rank or the Betti number of MM and the elements a1,a2,,amR{a}_{1},{a}_{2},\ldots ,{a}_{m} \in R (defined up to multiplication by units in RR ) are called the invariant factors of MM .

Definition. The integer rr in Theorem 5 is called the free rank or the Betti number of MM and the elements a1,a2,,amR{a}_{1},{a}_{2},\ldots ,{a}_{m} \in R (defined up to multiplication by units in RR ) are called the invariant factors of MM .

Note that until we have proved that the invariant factors of MM are unique we should properly refer to aa set of invariant factors for MM (and similarly for the free rank),by which we mean any elements giving a decomposition for MM as in (1) of the theorem above.

Note that until we have proved that the invariant factors of MM are unique we should properly refer to aa set of invariant factors for MM (and similarly for the free rank),by which we mean any elements giving a decomposition for MM as in (1) of the theorem above.

Using the Chinese Remainder Theorem it is possible to decompose the cyclic modules in Theorem 5 further so that MM is the direct sum of cyclic modules whose annihilators are as simple as possible (namely (0) or generated by powers of primes in RR ). This gives an alternate decomposition which we shall also see is unique and which we now describe.

Using the Chinese Remainder Theorem it is possible to decompose the cyclic modules in Theorem 5 further so that MM is the direct sum of cyclic modules whose annihilators are as simple as possible (namely (0) or generated by powers of primes in RR ). This gives an alternate decomposition which we shall also see is unique and which we now describe.

Suppose aa is a nonzero element of the Principal Ideal Domain RR . Then since RR is also a Unique Factorization Domain we can write

Suppose aa is a nonzero element of the Principal Ideal Domain RR . Then since RR is also a Unique Factorization Domain we can write

a=up1α1p2α2psαsa = u{p}_{1}^{{\alpha }_{1}}{p}_{2}^{{\alpha }_{2}}\ldots {p}_{s}^{{\alpha }_{s}}

where the pi{p}_{i} are distinct primes in RR and uu is a unit. This factorization is unique up to units,so the ideals (piαi),i=1,,s\left( {p}_{i}^{{\alpha }_{i}}\right) ,i = 1,\ldots ,s are uniquely defined. For iji \neq j we have (piαi)+(pjαj)=R\left( {p}_{i}^{{\alpha }_{i}}\right) + \left( {p}_{j}^{{\alpha }_{j}}\right) = R since the sum of these two ideals is generated by a greatest common divisor,which is 1 for distinct primes pi,pj{p}_{i},{p}_{j} . Put another way,the ideals (piαi),i=1,,s\left( {p}_{i}^{{\alpha }_{i}}\right) ,i = 1,\ldots ,s ,are comaximal in pairs. The intersection of all these ideals is the ideal (a) since aa is the least common multiple of p1α1,p2α2,,psαs{p}_{1}^{{\alpha }_{1}},{p}_{2}^{{\alpha }_{2}},\ldots ,{p}_{s}^{{\alpha }_{s}} . Then the Chinese Remainder Theorem (Theorem 7.17) shows that

其中 pi{p}_{i}RR 中的不同素数,而 uu 是单位。这种分解在单位下是唯一的,因此理想 (piαi),i=1,,s\left( {p}_{i}^{{\alpha }_{i}}\right) ,i = 1,\ldots ,s 是唯一确定的。对于 iji \neq j ,我们有 (piαi)+(pjαj)=R\left( {p}_{i}^{{\alpha }_{i}}\right) + \left( {p}_{j}^{{\alpha }_{j}}\right) = R ,因为这两个理想的和是由最大公约数生成的,而对于不同的素数 pi,pj{p}_{i},{p}_{j} ,这个最大公约数是 1。换句话说,理想 (piαi),i=1,,s\left( {p}_{i}^{{\alpha }_{i}}\right) ,i = 1,\ldots ,s 在一对中是共极大的。所有这些理想的交集是理想 (a),因为 aap1α1,p2α2,,psαs{p}_{1}^{{\alpha }_{1}},{p}_{2}^{{\alpha }_{2}},\ldots ,{p}_{s}^{{\alpha }_{s}} 的最小公倍数。然后中国剩余定理(定理 7.17)表明

R/(a)R/(p1α1)R/(p2α2)R/(psαs)R/\left( a\right) \cong R/\left( {p}_{1}^{{\alpha }_{1}}\right) \oplus R/\left( {p}_{2}^{{\alpha }_{2}}\right) \oplus \cdots \oplus R/\left( {p}_{s}^{{\alpha }_{s}}\right)

as rings and also as RR -modules.

作为环,也作为 RR -模。

Applying this to the modules in Theorem 5 allows us to write each of the direct summands R/(ai)R/\left( {a}_{i}\right) for the invariant factor ai{a}_{i} of MM as a direct sum of cyclic modules whose annihilators are the prime power divisors of ai{a}_{i} . This proves:

将其应用于定理 5 中的模,允许我们将每个直和项 R/(ai)R/\left( {a}_{i}\right) 对于不变因子 ai{a}_{i}MM 写成循环模的直和,其消去子是 ai{a}_{i} 的素数幂除数。这证明了:

Theorem 6. (Fundamental Theorem,Existence: Elementary Divisor Form) Let RR be a P.I.D. and let MM be a finitely generated RR -module. Then MM is the direct sum of a finite number of cyclic modules whose annihilators are either (0) or generated by powers of primes in RR ,i.e.,

定理 6。(基本定理,存在性:初等除数形式)设 RR 是一个 P.I.D.,并设 MM 是一个有限生成的 RR -模。那么 MM 是有限个循环模的直和,其消去子要么是 (0),要么由 RR 中素数的幂生成,即,

MRrR/(p1α1)R/(p2α2)R/(ptαt)M \cong {R}^{r} \oplus R/\left( {p}_{1}^{{\alpha }_{1}}\right) \oplus R/\left( {p}_{2}^{{\alpha }_{2}}\right) \oplus \cdots \oplus R/\left( {p}_{t}^{{\alpha }_{t}}\right)

where r0r \geq 0 is an integer and p1α1,,ptαt{p}_{1}^{{\alpha }_{1}},\ldots ,{p}_{t}^{{\alpha }_{t}} are positive powers of (not necessarily distinct) primes in RR .

其中 r0r \geq 0 是一个整数,p1α1,,ptαt{p}_{1}^{{\alpha }_{1}},\ldots ,{p}_{t}^{{\alpha }_{t}} 是(不一定不同)素数的正幂 RR

We proved Theorem 6 by using the prime power factors of the invariant factors for MM . In fact we shall see that the decomposition of MM into a direct sum of cyclic modules whose annihilators are (0) or prime powers as in Theorem 6 is unique, i.e., the integer rr and the ideals (p1α1),,(ptαt)\left( {p}_{1}^{{\alpha }_{1}}\right) ,\ldots ,\left( {p}_{t}^{{\alpha }_{t}}\right) are uniquely defined for MM . These prime powers are given a name:

我们通过使用不变因子的素数次幂证明了定理6 MM 。实际上我们将看到,MM 分解为循环模的直接和,其消元子为 (0) 或定理6中的素数次幂是唯一的,即整数 rr 和理想 (p1α1),,(ptαt)\left( {p}_{1}^{{\alpha }_{1}}\right) ,\ldots ,\left( {p}_{t}^{{\alpha }_{t}}\right) 对于 MM 是唯一确定的。这些素数次幂被赋予了一个名称:

Definition. Let RR be a P.I.D. and let MM be a finitely generated RR -module as in Theorem 6 . The prime powers p1α1,,ptαt{p}_{1}^{{\alpha }_{1}},\ldots ,{p}_{t}^{{\alpha }_{t}} (defined up to multiplication by units in RR ) are called the elementary divisors of MM .

定义。设 RR 是一个P.I.D.,并且设 MM 是定理6中的有限生成 RR -模。素数次幂 p1α1,,ptαt{p}_{1}^{{\alpha }_{1}},\ldots ,{p}_{t}^{{\alpha }_{t}}(乘以 RR 中的单位元)被称为 MM 的基本除数。

Suppose MM is a finitely generated torsion module over the Principal Ideal Domain RR . If for the distinct primes p1,p2,,pn{p}_{1},{p}_{2},\ldots ,{p}_{n} occurring in the decomposition in Theorem 6 we group together all the cyclic factors corresponding to the same prime pi{p}_{i} we see in particular that MM can be written as a direct sum

假设 MM 是主理想整环 RR 上的有限生成挠模。如果在定理6中的分解中出现的不同素数 p1,p2,,pn{p}_{1},{p}_{2},\ldots ,{p}_{n} 将所有对应于同一素数 pi{p}_{i} 的循环因子分组在一起,我们特别看到 MM 可以写为直接和

M=N1N2NnM = {N}_{1} \oplus {N}_{2} \oplus \cdots \oplus {N}_{n}

where Ni{N}_{i} consists of all the elements of MM which are annihilated by some power of the prime pi{p}_{i} . This result holds also for modules over RR which may not be finitely generated:

其中 Ni{N}_{i} 包含 MM 中所有被某个素数 pi{p}_{i} 的幂消元的元素。这个结果也适用于可能不是有限生成的 RR 上的模:

Theorem 7. (The Primary Decomposition Theorem) Let RR be a P.I.D. and let MM be a nonzero torsionRmodule (not necessarily finitely generated) with nonzero annihilator\frac{\text{nonzero torsion}}{R - \text{module (not necessarily finitely generated) with nonzero annihilator}} aa . Suppose the factorization of aa into distinct prime powers in RR is

定理7.(素数分解定理)设 RR 是一个P.I.D.,并且设 MMnonzero torsionRmodule (not necessarily finitely generated) with nonzero annihilator\frac{\text{nonzero torsion}}{R - \text{module (not necessarily finitely generated) with nonzero annihilator}} aa 。假设 aaRR 中分解为不同素数次幂的因式分解是

a=up1α1p2α2pnαna = u{p}_{1}^{{\alpha }_{1}}{p}_{2}^{{\alpha }_{2}}\cdots {p}_{n}^{{\alpha }_{n}}

and let Ni={xMpiαix=0},1in{N}_{i} = \left\{ {x \in M \mid {p}_{i}^{{\alpha }_{i}}x = 0}\right\} ,1 \leq i \leq n . Then Ni{N}_{i} is a submodule of MM with annihilator piαi{p}_{i}^{{\alpha }_{i}} and is the submodule of MM of all elements annihilated by some power of pi{p}_{i} . We have

并且让 Ni={xMpiαix=0},1in{N}_{i} = \left\{ {x \in M \mid {p}_{i}^{{\alpha }_{i}}x = 0}\right\} ,1 \leq i \leq n 成立。那么 Ni{N}_{i}MM 的一个子模,其消去子为 piαi{p}_{i}^{{\alpha }_{i}},并且是所有被 pi{p}_{i} 的某次幂消去的元素构成的 MM 的子模。我们有

M=N1N2Nn.M = {N}_{1} \oplus {N}_{2} \oplus \cdots \oplus {N}_{n}.

If MM is finitely generated then each Ni{N}_{i} is the direct sum of finitely many cyclic modules whose annihilators are divisors of piαi{p}_{i}^{{\alpha }_{i}} .

如果 MM 是有限生成的,那么每个 Ni{N}_{i} 是有限多个循环模的直接和,其消去子是 piαi{p}_{i}^{{\alpha }_{i}} 的除数。

Proof: We have already proved these results in the case where MM is finitely generated over RR . In the general case it is clear that Ni{N}_{i} is a submodule of MM with annihilator dividing piαi{p}_{i}^{{\alpha }_{i}} . Since RR is a P.I.D. the ideals (piαi)\left( {p}_{i}^{{\alpha }_{i}}\right) and (pjαj)\left( {p}_{j}^{{\alpha }_{j}}\right) are comaximal for iji \neq j ,so the direct sum decomposition of MM can be proved easily by modifying the argument in the proof of the Chinese Remainder Theorem to apply it to modules. Using this direct sum decomposition it is easy to see that the annihilator of Ni{N}_{i} is precisely piαi{p}_{i}^{{\alpha }_{i}} .

证明:我们已经证明了当 MMRR 上是有限生成的情况下的这些结果。在一般情况下,显然 Ni{N}_{i}MM 的一个子模,其消去子整除 piαi{p}_{i}^{{\alpha }_{i}}。由于 RR 是一个P.I.D.,理想 (piαi)\left( {p}_{i}^{{\alpha }_{i}}\right)(pjαj)\left( {p}_{j}^{{\alpha }_{j}}\right) 对于 iji \neq j 是极大理想的,因此可以通过修改中国剩余定理证明中的论据来容易地证明 MM 的直接和分解。使用这个直接和分解,可以容易地看出 Ni{N}_{i} 的消去子恰好是 piαi{p}_{i}^{{\alpha }_{i}}

Definition. The submodule Ni{N}_{i} in the previous theorem is called the pi{p}_{i} -primary component of MM .

定义。在前面定理中的子模 Ni{N}_{i} 被称为 pi{p}_{i} -主分量。

Notice that with this terminology the elementary divisors of a finitely generated module MM are just the invariant factors of the primary components of Tor(M)\operatorname{Tor}\left( M\right) .

注意,使用这个术语,有限生成模 MM 的基本除数只是 Tor(M)\operatorname{Tor}\left( M\right) 的主分量的不变因子。

We now prove the uniqueness statements regarding the decompositions in the Fundamental Theorem.

我们现在证明关于基本定理中分解的唯一性陈述。

Note that if MM is any module over a commutative ring RR and aa is an element of RR then aM={ammM}{aM} = \{ {am} \mid m \in M\} is a submodule of MM . Recall also that in a Principal Ideal Domain RR the nonzero prime ideals are maximal,hence the quotient of RR by a nonzero prime ideal is a field.

注意,如果 MM 是一个交换环 RR 上的模,并且 aaRR 的一个元素,那么 aM={ammM}{aM} = \{ {am} \mid m \in M\}MM 的一个子模。同时也要记住,在主理想整环 RR 中,非零素理想是极大理想,因此 RR 除以一个非零素理想的商是一个域。

Lemma 8. Let RR be a P.I.D. and let pp be a prime in RR . Let FF denote the field R/(p)R/\left( p\right) .

引理 8。设 RR 是一个主理想整环,ppRR 中的一个素数。令 FF 表示域 R/(p)R/\left( p\right)

(1) Let M=RrM = {R}^{r} . Then M/pMFrM/{pM} \cong {F}^{r} .

(1) 设 M=RrM = {R}^{r} 。那么 M/pMFrM/{pM} \cong {F}^{r}

(2) Let M=R/(a)M = R/\left( a\right) where aa is a nonzero element of RR . Then

(2) 设 M=R/(a)M = R/\left( a\right) ,其中 aaRR 中的一个非零元素。那么

M/pM{F if p divides a in R0 if p does not divide a in R.M/{pM} \cong \left\{ \begin{array}{ll} F & \text{ if }p\text{ divides }a\text{ in }R \\ 0 & \text{ if }p\text{ does not divide }a\text{ in }R. \end{array}\right.

(3) Let M=R/(a1)R/(a2)R/(ak)M = R/\left( {a}_{1}\right) \oplus R/\left( {a}_{2}\right) \oplus \cdots \oplus R/\left( {a}_{k}\right) where each ai{a}_{i} is divisible by pp . Then M/pMFkM/{pM} \cong {F}^{k} .

(3) 设 M=R/(a1)R/(a2)R/(ak)M = R/\left( {a}_{1}\right) \oplus R/\left( {a}_{2}\right) \oplus \cdots \oplus R/\left( {a}_{k}\right) ,其中每个 ai{a}_{i} 都能被 pp 整除。那么 M/pMFkM/{pM} \cong {F}^{k}

Proof: (1) There is a natural map from Rr{R}^{r} to (R/(p))r{\left( R/\left( p\right) \right) }^{r} defined by mapping (α1,,αr)\left( {{\alpha }_{1},\ldots ,{\alpha }_{r}}\right) to (α1  mod  (p),,αr  mod  (p))\left( {{\alpha }_{1}{\;\operatorname{mod}\;\left( p\right) },\ldots ,{\alpha }_{r}{\;\operatorname{mod}\;\left( p\right) }}\right) . This is clearly a surjective RR -module homomorphism with kernel consisting of the rr -tuples all of whose coordinates are divisible by pp ,i.e., pRrp{R}^{r} ,so Rr/pRr(R/(p))r{R}^{r}/p{R}^{r} \cong {\left( R/\left( p\right) \right) }^{r} ,which is (1).

证明:(1) 存在一个从 Rr{R}^{r}(R/(p))r{\left( R/\left( p\right) \right) }^{r} 的自然映射,定义为将 (α1,,αr)\left( {{\alpha }_{1},\ldots ,{\alpha }_{r}}\right) 映射到 (α1  mod  (p),,αr  mod  (p))\left( {{\alpha }_{1}{\;\operatorname{mod}\;\left( p\right) },\ldots ,{\alpha }_{r}{\;\operatorname{mod}\;\left( p\right) }}\right) 。这显然是一个满射的 RR -模同态,其核由所有坐标都能被 pp 整除的 rr -元组组成,即 pRrp{R}^{r} ,因此 Rr/pRr(R/(p))r{R}^{r}/p{R}^{r} \cong {\left( R/\left( p\right) \right) }^{r} ,这就是 (1)。

(2) This follows from the Isomorphism Theorems: note first that p(R/(a))p\left( {R/\left( a\right) }\right) is the image of the ideal(p)in the quotient R/(a)R/\left( a\right) ,hence is (p)+(a)/(a)\left( p\right) + \left( a\right) /\left( a\right) . The ideal (p)+(a)\left( p\right) + \left( a\right) is generated by a greatest common divisor of pp and aa ,hence is(p)if pp divides aa and is R=(1)R = \left( 1\right) otherwise. Hence pM=(p)/(a){pM} = \left( p\right) /\left( a\right) if pp divides aa and is R/(a)=MR/\left( a\right) = M otherwise. If pp divides aa then M/pM=(R/(a))/((p)/(a))R/(p)M/{pM} = \left( {R/\left( a\right) }\right) /\left( {\left( p\right) /\left( a\right) }\right) \cong R/\left( p\right) ,and if pp does not divide aa then M/pM=M/M=0M/{pM} = M/M = 0 ,which proves (2).

(2) 这遵循同构定理:首先注意 p(R/(a))p\left( {R/\left( a\right) }\right) 是理想(p)在商 R/(a)R/\left( a\right) 中的像,因此是 (p)+(a)/(a)\left( p\right) + \left( a\right) /\left( a\right) 。理想 (p)+(a)\left( p\right) + \left( a\right)ppaa 的最大公约数生成,因此如果 pp 整除 aa ,则是 (p),否则是 R=(1)R = \left( 1\right) 。因此如果 pp 整除 aa ,则是 pM=(p)/(a){pM} = \left( p\right) /\left( a\right) ,否则是 R/(a)=MR/\left( a\right) = M 。如果 pp 整除 aa ,那么 M/pM=(R/(a))/((p)/(a))R/(p)M/{pM} = \left( {R/\left( a\right) }\right) /\left( {\left( p\right) /\left( a\right) }\right) \cong R/\left( p\right) ,如果 pp 不整除 aa ,那么 M/pM=M/M=0M/{pM} = M/M = 0 ,这证明了 (2)。

(3) This follows from (2) as in the proof of part (1) of Theorem 5.

(3) 这遵循 (2),如同定理 5 第 (1) 部分证明中一样。

Theorem 9. (Fundamental Theorem,Uniqueness) Let RR be a P.I.D.

定理 9。(基本定理,唯一性)设 RR 是一个 P.I.D.。

(1) Two finitely generated RR -modules M1{M}_{1} and M2{M}_{2} are isomorphic if and only if they have the same free rank and the same list of invariant factors.

(1) 两个有限生成的 RR -模 M1{M}_{1}M2{M}_{2} 是同构的,当且仅当它们具有相同的自由秩和相同的不变因子列表。

(2) Two finitely generated RR -modules M1{M}_{1} and M2{M}_{2} are isomorphic if and only if they have the same free rank and the same list of elementary divisors.

(2) 两个有限生成的 RR -模 M1{M}_{1}M2{M}_{2} 是同构的,当且仅当它们具有相同的自由秩和相同的初等因子列表。

Proof: If M1{M}_{1} and M2{M}_{2} have the same free rank and list of invariant factors or the same free rank and list of elementary divisors then they are clearly isomorphic.

证明:如果 M1{M}_{1}M2{M}_{2} 具有相同的自由秩和不变因子列表,或者具有相同的自由秩和初等因子列表,那么它们显然是同构的。

Suppose that M1{M}_{1} and M2{M}_{2} are isomorphic. Any isomorphism between M1{M}_{1} and M2{M}_{2} maps the torsion in M1{M}_{1} to the torsion in M2{M}_{2} so we must have Tor(M1)Tor(M2)\operatorname{Tor}\left( {M}_{1}\right) \cong \operatorname{Tor}\left( {M}_{2}\right) . Then Rr1M1/Tor(M1)M2/Tor(M2)Rr2{R}^{{r}_{1}} \cong {M}_{1}/\operatorname{Tor}\left( {M}_{1}\right) \cong {M}_{2}/\operatorname{Tor}\left( {M}_{2}\right) \cong {R}^{{r}_{2}} where r1{r}_{1} is the free rank of M1{M}_{1} and r2{r}_{2} is the free rank of M2{M}_{2} . Let pp be any nonzero prime in RR . Then from Rr1Rr2{R}^{{r}_{1}} \cong {R}^{{r}_{2}} we obtain Rr1/pRr1Rr2/pRr2{R}^{{r}_{1}}/p{R}^{{r}_{1}} \cong {R}^{{r}_{2}}/p{R}^{{r}_{2}} . By (1) of the previous lemma,this implies Fr1Fr2{F}^{{r}_{1}} \cong {F}^{{r}_{2}} where FF is the field R/pRR/{pR} . Hence we have an isomorphism of an r1{r}_{1} -dimensional vector space over FF with an r2{r}_{2} -dimensional vector space over FF ,so that r1=r2{r}_{1} = {r}_{2} and M1{M}_{1} and M2{M}_{2} have the same free rank.

假设 M1{M}_{1}M2{M}_{2} 是同构的。任何 M1{M}_{1}M2{M}_{2} 之间的同构都将 M1{M}_{1} 中的扭元映射到 M2{M}_{2} 中的扭元,因此我们必须有 Tor(M1)Tor(M2)\operatorname{Tor}\left( {M}_{1}\right) \cong \operatorname{Tor}\left( {M}_{2}\right) 。那么 Rr1M1/Tor(M1)M2/Tor(M2)Rr2{R}^{{r}_{1}} \cong {M}_{1}/\operatorname{Tor}\left( {M}_{1}\right) \cong {M}_{2}/\operatorname{Tor}\left( {M}_{2}\right) \cong {R}^{{r}_{2}} ,其中 r1{r}_{1}M1{M}_{1} 的自由秩,r2{r}_{2}M2{M}_{2} 的自由秩。设 ppRR 中的任意非零素数。那么从 Rr1Rr2{R}^{{r}_{1}} \cong {R}^{{r}_{2}} 我们得到 Rr1/pRr1Rr2/pRr2{R}^{{r}_{1}}/p{R}^{{r}_{1}} \cong {R}^{{r}_{2}}/p{R}^{{r}_{2}} 。根据前一个引理的 (1) ,这暗示了 Fr1Fr2{F}^{{r}_{1}} \cong {F}^{{r}_{2}} ,其中 FF 是域 R/pRR/{pR} 。因此我们有一个 r1{r}_{1} 维向量空间在 FF 上的同构与一个 r2{r}_{2} 维向量空间在 FF 上的同构,从而 r1=r2{r}_{1} = {r}_{2} 以及 M1{M}_{1}M2{M}_{2} 具有相同的自由秩。

We are reduced to showing that M1{M}_{1} and M2{M}_{2} have the same lists of invariant factors and elementary divisors. To do this we need only work with the isomorphic torsion modules Tor(M1)\operatorname{Tor}\left( {M}_{1}\right) and Tor(M2)\operatorname{Tor}\left( {M}_{2}\right) ,i.e.,we may as well assume that both M1{M}_{1} and M2{M}_{2} are torsion RR -modules.

我们需要证明 M1{M}_{1}M2{M}_{2} 具有相同的不变因子和 elementary divisors 的列表。为此,我们只需要处理同构的扭元模块 Tor(M1)\operatorname{Tor}\left( {M}_{1}\right)Tor(M2)\operatorname{Tor}\left( {M}_{2}\right) ,即,我们可以假设 M1{M}_{1}M2{M}_{2} 都是扭元 RR -模块。

We first show they have the same elementary divisors. It suffices to show that for any fixed prime pp the elementary divisors which are a power of pp are the same for both M1{M}_{1} and M2{M}_{2} . If M1M2{M}_{1} \cong {M}_{2} then the pp -primary submodule of M1{M}_{1} ( = the direct sum of the cyclic factors whose elementary divisors are powers of pp ) is isomorphic to the pp -primary submodule of M2{M}_{2} ,since these are the submodules of elements which are annihilated by some power of pp . We are therefore reduced to the case of proving that if two modules M1{M}_{1} and M2{M}_{2} which have annihilator a power of pp are isomorphic then they have the same elementary divisors.

我们首先证明它们有相同的初等因子。只需证明对于任意固定的素数 ppM1{M}_{1}M2{M}_{2} 的初等因子中是 pp 的幂次的因子是相同的。如果 M1M2{M}_{1} \cong {M}_{2} ,那么 M1{M}_{1}pp -主子模(即初等因子为 pp 的幂次的循环因子的直接和)与 M2{M}_{2}pp -主子模同构,因为这些是能被 pp 的某个幂次消去的元素的子模。因此我们只需证明如果两个模 M1{M}_{1}M2{M}_{2} 的消去子是 pp 的某个幂次,且它们同构,那么它们有相同的初等因子。

We proceed by induction on the power of pp in the annihilator of M1{M}_{1} (which is the same as the annihilator of M2{M}_{2} since M1{M}_{1} and M2{M}_{2} are isomorphic). If this power is 0, then both M1{M}_{1} and M2{M}_{2} are 0 and we are done. Otherwise M1{M}_{1} (and M2{M}_{2} ) have nontrivial elementary divisors. Suppose the elementary divisors of M1{M}_{1} are given by

我们通过对 M1{M}_{1} 的消去子中的 pp 的幂次进行归纳来继续。如果这个幂次是 0,那么 M1{M}_{1}M2{M}_{2} 都是 0,我们就完成了证明。否则 M1{M}_{1}(和 M2{M}_{2})有非平凡的初等因子。假设 M1{M}_{1} 的初等因子由以下给出

 elementary divisors of M1:p,p,,pm times ,pα1,pα2,,pαs,\text{ elementary divisors of }{M}_{1} : \underset{m\text{ times }}{\underbrace{p,p,\ldots ,p}},{p}^{{\alpha }_{1}},{p}^{{\alpha }_{2}},\ldots ,{p}^{{\alpha }_{s}},

where 2α1α2αs2 \leq {\alpha }_{1} \leq {\alpha }_{2} \leq \cdots \leq {\alpha }_{s} ,i.e., M1{M}_{1} is the direct sum of cyclic modules with generators x1,x2,,xm,xm+1,,xm+s{x}_{1},{x}_{2},\ldots ,{x}_{m},{x}_{m + 1},\ldots ,{x}_{m + s} ,say,whose annihilators are (p),(p),,(p)\left( p\right) ,\left( p\right) ,\ldots ,\left( p\right) , (pα1),,(pαs)\left( {p}^{{\alpha }_{1}}\right) ,\ldots ,\left( {p}^{{\alpha }_{s}}\right) ,respectively. Then the submodule pM1p{M}_{1} has elementary divisors

其中 2α1α2αs2 \leq {\alpha }_{1} \leq {\alpha }_{2} \leq \cdots \leq {\alpha }_{s} ,即 M1{M}_{1} 是生成元为 x1,x2,,xm,xm+1,,xm+s{x}_{1},{x}_{2},\ldots ,{x}_{m},{x}_{m + 1},\ldots ,{x}_{m + s} 的循环模的直接和,其消去子分别是 (p),(p),,(p)\left( p\right) ,\left( p\right) ,\ldots ,\left( p\right)(pα1),,(pαs)\left( {p}^{{\alpha }_{1}}\right) ,\ldots ,\left( {p}^{{\alpha }_{s}}\right)。那么子模 pM1p{M}_{1} 的初等因子是

elementary divisors ofpM1:pα11,pα21,,pαs1\text{elementary divisors of}p{M}_{1} : {p}^{{\alpha }_{1} - 1},{p}^{{\alpha }_{2} - 1},\ldots ,{p}^{{\alpha }_{s} - 1}

since pM1p{M}_{1} is the direct sum of the cyclic modules with generators px1,px2,,pxmp{x}_{1},p{x}_{2},\ldots ,p{x}_{m} , pxm+1,,pxm+sp{x}_{m + 1},\ldots ,p{x}_{m + s} whose annihilators are (1),(1),,(1),(pα11),,(pαs1)\left( 1\right) ,\left( 1\right) ,\ldots ,\left( 1\right) ,\left( {p}^{{\alpha }_{1} - 1}\right) ,\ldots ,\left( {p}^{{\alpha }_{s} - 1}\right) ,respectively. Similarly,if the elementary divisors of M2{M}_{2} are given by

因为 pM1p{M}_{1} 是生成元分别为 px1,px2,,pxmp{x}_{1},p{x}_{2},\ldots ,p{x}_{m}pxm+1,,pxm+sp{x}_{m + 1},\ldots ,p{x}_{m + s} 的循环模的直接和,其消去子分别是 (1),(1),,(1),(pα11),,(pαs1)\left( 1\right) ,\left( 1\right) ,\ldots ,\left( 1\right) ,\left( {p}^{{\alpha }_{1} - 1}\right) ,\ldots ,\left( {p}^{{\alpha }_{s} - 1}\right)。类似地,如果 M2{M}_{2} 的初等因子由以下给出

 elementary divisors of M2:p,p,,pn times ,pβ1,pβ2,,pβt,\text{ elementary divisors of }{M}_{2} : \underset{n\text{ times }}{\underbrace{p,p,\ldots ,p}},{p}^{{\beta }_{1}},{p}^{{\beta }_{2}},\ldots ,{p}^{{\beta }_{t}},

where 2β1β2βt2 \leq {\beta }_{1} \leq {\beta }_{2} \leq \cdots \leq {\beta }_{t} ,then pM2p{M}_{2} has elementary divisors

其中 2β1β2βt2 \leq {\beta }_{1} \leq {\beta }_{2} \leq \cdots \leq {\beta }_{t} ,那么 pM2p{M}_{2} 具有初等因子

elementary divisors ofpM2:pβ11,pβ21,,pβt1.\text{elementary divisors of}p{M}_{2} : {p}^{{\beta }_{1} - 1},{p}^{{\beta }_{2} - 1},\ldots ,{p}^{{\beta }_{t} - 1}\text{.}

Since M1M2{M}_{1} \cong {M}_{2} ,also pM1pM2p{M}_{1} \cong p{M}_{2} and the power of pp in the annihilator of pM1p{M}_{1} is one less than the power of pp in the annihilator of M1{M}_{1} . By induction,the elementary divisors for pM1p{M}_{1} are the same as the elementary divisors for pM2p{M}_{2} ,i.e., s=ts = t and αi1=βi1{\alpha }_{i} - 1 = {\beta }_{i} - 1 for i=1,2,,si = 1,2,\ldots ,s ,hence αi=βi{\alpha }_{i} = {\beta }_{i} for i=1,2,,si = 1,2,\ldots ,s . Finally,since also M1/pM1M2/pM2{M}_{1}/p{M}_{1} \cong {M}_{2}/p{M}_{2} we see from (3) of the lemma above that Fm+sFn+t{F}^{m + s} \cong {F}^{n + t} , which shows that m+s=n+tm + s = n + t hence m=nm = n since we have already seen s=ts = t . This proves that the set of elementary divisors for M1{M}_{1} is the same as the set of elementary divisors for M2{M}_{2} .

由于 M1M2{M}_{1} \cong {M}_{2} ,同样 pM1pM2p{M}_{1} \cong p{M}_{2} ,且 pppM1p{M}_{1} 的消灭子中的幂次比在 M1{M}_{1} 的消灭子中的幂次少一。通过归纳,pM1p{M}_{1} 的初等因子与 pM2p{M}_{2} 的初等因子相同,即 s=ts = tαi1=βi1{\alpha }_{i} - 1 = {\beta }_{i} - 1 对于 i=1,2,,si = 1,2,\ldots ,s ,因此 αi=βi{\alpha }_{i} = {\beta }_{i} 对于 i=1,2,,si = 1,2,\ldots ,s 。最后,由于同样 M1/pM1M2/pM2{M}_{1}/p{M}_{1} \cong {M}_{2}/p{M}_{2} ,我们从上述引理的 (3) 中看到 Fm+sFn+t{F}^{m + s} \cong {F}^{n + t} ,这表明 m+s=n+tm + s = n + t ,因此 m=nm = n ,因为我们已经看到 s=ts = t 。这证明了 M1{M}_{1} 的初等因子集合与 M2{M}_{2} 的初等因子集合相同。

We now show that M1{M}_{1} and M2{M}_{2} must have the same invariant factors. Suppose a1a2am{a}_{1}\left| {a}_{2}\right| \cdots \mid {a}_{m} are invariant factors for M1{M}_{1} . We obtain a set of elementary divisors for M1{M}_{1} by taking the prime power factors of these elements. Note that then the divisibility relations on the invariant factors imply that am{a}_{m} is the product of the largest of the prime powers among these elementary divisors, am1{a}_{m - 1} is the product of the largest prime powers among these elementary divisors once the factors for am{a}_{m} have been removed,and so on. If b1b2bn{b}_{1}\left| {b}_{2}\right| \cdots \mid {b}_{n} are invariant factors for M2{M}_{2} then we similarly obtain a set of elementary divisors for M2{M}_{2} by taking the prime power factors of these elements. But we showed above that the elementary divisors for M1{M}_{1} and M2{M}_{2} are the same,and it follows that the same is true of the invariant factors.

我们现在证明 M1{M}_{1}M2{M}_{2} 必须具有相同的不变因子。假设 a1a2am{a}_{1}\left| {a}_{2}\right| \cdots \mid {a}_{m}M1{M}_{1} 的不变因子。我们通过对这些元素的素数次幂取因子来得到 M1{M}_{1} 的一组初等因子。注意,不变因子上的可整除关系意味着 am{a}_{m} 是这些初等因子中最大的素数次幂的乘积,am1{a}_{m - 1} 是在移除 am{a}_{m} 的因子后这些初等因子中最大的素数次幂的乘积,依此类推。如果 b1b2bn{b}_{1}\left| {b}_{2}\right| \cdots \mid {b}_{n}M2{M}_{2} 的不变因子,那么我们同样通过对这些元素的素数次幂取因子来得到 M2{M}_{2} 的一组初等因子。但我们已经证明 M1{M}_{1}M2{M}_{2} 的初等因子是相同的,因此不变因子也是如此。

Corollary 10. Let RR be a P.I.D. and let MM be a finitely generated RR -module.

推论 10. 设 RR 是一个 P.I.D.,并且 MM 是一个有限生成的 RR -模。

(1) The elementary divisors of MM are the prime power factors of the invariant factors of MM .

(1) MM 的初等因子是 MM 不变因子的素数次幂因子。

(2) The largest invariant factor of MM is the product of the largest of the distinct prime powers among the elementary divisors of MM ,the next largest invariant factor is the product of the largest of the distinct prime powers among the remaining elementary divisors of MM ,and so on.

(2) MM 的最大不变因子是 MM 的初等因子中不同的素数次幂中最大的乘积,次大的不变因子是 MM 的剩余初等因子中不同的素数次幂中最大的乘积,依此类推。

Proof: The procedure in (1) gives aa set of elementary divisors and since the elementary divisors for MM are unique by the theorem,it follows that the procedure in (1) gives the set of elementary divisors. Similarly for (2).

证明:过程 (1) 给出了 aa 的一组初等因子,由于根据定理 MM 的初等因子是唯一的,因此过程 (1) 给出了初等因子的集合。对于 (2) 也是类似的情况。

Corollary 11. (The Fundamental Theorem of Finitely Generated Abelian Groups) See Theorem 5.3 and Theorem 5.5.

推论 11.(有限生成阿贝尔群的基本定理)参见定理 5.3 和定理 5.5。

Proof: Take R=ZR = \mathbb{Z} in Theorems 5,6 and 9 (note however that the invariant factors are listed in reverse order in Chapter 5 for computational convenience).

证明:取定理 5、6 和 9 中的 R=ZR = \mathbb{Z}(然而注意,在第五章中为了计算方便,不变因子的列出顺序是相反的)。

The procedure for passing between elementary divisors and invariant factors in Corollary 10 is described in some detail in Chapter 5 in the case of finitely generated abelian groups.

推论 10 中从初等因子到不变因子的转换过程在第五章中对于有限生成阿贝尔群的情况有详细的描述。

Note also that if a finitely generated module MM is written as a direct sum of cyclic modules of the form R/(a)R/\left( a\right) then the ideals (a) which occur are not in general unique unless some additional conditions are imposed (such as the divisibility condition for the invariant factors or the condition that aa be the power of a prime in the case of the elementary divisors). To decide whether two modules are isomorphic it is necessary to first write them in such a standard (or canonical) form.

注意,如果一个有限生成模块 MM 可以写成形式为 R/(a)R/\left( a\right) 的循环模块的直接和,那么出现的理想 (a) 通常不是唯一的,除非附加某些条件(例如,对于不变因子的可除性条件,或者在素数幂的情况下 aa 的条件)。为了判断两个模块是否同构,首先需要将它们写成这样的标准(或典型)形式。

EXERCISES

练习

  1. Let MM be a module over the integral domain RR .

(a) Suppose xx is a nonzero torsion element in MM . Show that xx and 0 are "linearly dependent." Conclude that the rank of Tor(M)\operatorname{Tor}\left( M\right) is 0,so that in particular any torsion RR -module has rank 0 .

(b) Show that the rank of MM is the same as the rank of the (torsion free) quotient M/TorMM/\operatorname{Tor}M .

  1. Let MM be a module over the integral domain RR .

(a) Suppose that MM has rank nn and that x1,x2,,xn{x}_{1},{x}_{2},\ldots ,{x}_{n} is any maximal set of linearly independent elements of MM . Let N=Rx1++RxnN = R{x}_{1} + \ldots + R{x}_{n} be the submodule generated by x1,x2,,xn{x}_{1},{x}_{2},\ldots ,{x}_{n} . Prove that NN is isomorphic to Rn{R}^{n} and that the quotient M/NM/N is a torsion RR -module (equivalently,the elements x1,,xn{x}_{1},\ldots ,{x}_{n} are linearly independent and for any yMy \in M there is a nonzero element rRr \in R such that ry{ry} can be written as a linear combination r1x1++rnxn{r}_{1}{x}_{1} + \ldots + {r}_{n}{x}_{n} of the xi{x}_{i} ).

(b) Prove conversely that if MM contains a submodule NN that is free of rank nn (i.e., NN \cong Rn{R}^{n} ) such that the quotient M/NM/N is a torsion RR -module then MM has rank nn . [Let y1,y2,,yn+1{y}_{1},{y}_{2},\ldots ,{y}_{n + 1} be any n+1n + 1 elements of MM . Use the fact that M/NM/N is torsion to write riyi{r}_{i}{y}_{i} as a linear combination of a basis for NN for some nonzero elements r1,,rn+1{r}_{1},\ldots ,{r}_{n + 1} of RR . Use an argument as in the proof of Proposition 3 to see that the riyi{r}_{i}{y}_{i} ,and hence also the yi{y}_{i} ,are linearly dependent.]

  1. Let RR be an integral domain and let AA and BB be RR -modules of ranks mm and nn ,respectively. Prove that the rank of ABA \oplus B is m+nm + n . [Use the previous exercise.]

  2. RR 为一个整环,并且设 AABBRR -秩分别为 mmnn 的模块。证明 ABA \oplus B 的秩是 m+nm + n 。[使用前一个练习。]

  3. Let RR be an integral domain,let MM be an RR -module and let NN be a submodule of MM . Suppose MM has rank n,Nn,N has rank rr and the quotient M/NM/N has rank ss . Prove that n=r+sn = r + s . [Let x1,x2,,xs{x}_{1},{x}_{2},\ldots ,{x}_{s} be elements of MM whose images in M/NM/N are a maximal set of independent elements and let xs+1,xs+2,,xs+r{x}_{s + 1},{x}_{s + 2},\ldots ,{x}_{s + r} be a maximal set of independent elements in NN . Prove that x1,x2,,xs+r{x}_{1},{x}_{2},\ldots ,{x}_{s + r} are linearly independent in MM and that for any element yMy \in M there is a nonzero element rRr \in R such that ry{ry} is a linear combination of these elements. Then use Exercise 2.]

  4. RR 为一个整环,MM 为一个 RR -模块,并且 NNMM 的一个子模块。假设 MM 的秩为 n,Nn,NNN 的秩为 rr,并且商 M/NM/N 的秩为 ss。证明 n=r+sn = r + s。[设 x1,x2,,xs{x}_{1},{x}_{2},\ldots ,{x}_{s}MM 中的元素,它们在 M/NM/N 中的像是独立元素的最大集合,并且设 xs+1,xs+2,,xs+r{x}_{s + 1},{x}_{s + 2},\ldots ,{x}_{s + r}NN 中独立元素的最大集合。证明 x1,x2,,xs+r{x}_{1},{x}_{2},\ldots ,{x}_{s + r}MM 中是线性无关的,并且对于任何元素 yMy \in M,存在一个非零元素 rRr \in R,使得 ry{ry} 是这些元素的线性组合。然后使用练习2。]

  5. Let R=Z[x]R = \mathbb{Z}\left\lbrack x\right\rbrack and let M=(2,x)M = \left( {2,x}\right) be the ideal generated by 2 and xx ,considered as a submodule of RR . Show that {2,x}\{ 2,x\} is not a basis of MM . [Find a nontrivial RR -linear dependence between these two elements.] Show that the rank of MM is 1 but that MM is not free of rank 1 (cf. Exercise 2).

  6. R=Z[x]R = \mathbb{Z}\left\lbrack x\right\rbrack 并且设 M=(2,x)M = \left( {2,x}\right) 是由 2 和 xx 生成的理想,将其视为 RR 的子模。证明 {2,x}\{ 2,x\} 不是 MM 的基。[在两个元素之间找到一个非平凡的 RR -线性相关关系。] 证明 MM 的秩为 1 但 MM 不是秩为 1 的自由模(参见练习 2)。

  7. Show that if RR is an integral domain and MM is any nonprincipal ideal of RR then MM is torsion free of rank 1 but is not a free RR -module.

  8. 证明如果 RR 是一个整环且 MMRR 的任意非主理想,那么 MM 是秩为 1 的无扭模但不是自由的 RR -模。

  9. Let RR be any ring,let A1,A2,,Am{A}_{1},{A}_{2},\ldots ,{A}_{m} be RR -modules and let Bi{B}_{i} be a submodule of Ai{A}_{i} , 1im1 \leq i \leq m . Prove that

  10. RR 是任意环,A1,A2,,Am{A}_{1},{A}_{2},\ldots ,{A}_{m}RR -模,Bi{B}_{i}Ai{A}_{i} 的子模,1im1 \leq i \leq m 。证明

(A1A2Am)/(B1B2Bm)(A1/B1)(A2/B2)(Am/Bm).\left( {{A}_{1} \oplus {A}_{2} \oplus \cdots \oplus {A}_{m}}\right) /\left( {{B}_{1} \oplus {B}_{2} \oplus \cdots \oplus {B}_{m}}\right) \cong \left( {{A}_{1}/{B}_{1}}\right) \oplus \left( {{A}_{2}/{B}_{2}}\right) \oplus \cdots \oplus \left( {{A}_{m}/{B}_{m}}\right) .
  1. Let RR be a P.I.D.,let BB be a torsion RR -module and let pp be a prime in RR . Prove that if pb=0{pb} = 0 for some nonzero bBb \in B ,then Ann(B)(p)\operatorname{Ann}\left( B\right) \subseteq \left( p\right) .

  2. RR 是一个 P.I.D.,BB 是一个扭 RR -模,ppRR 中的一个素数。证明如果 pb=0{pb} = 0 对于某个非零 bBb \in B 成立,那么 Ann(B)(p)\operatorname{Ann}\left( B\right) \subseteq \left( p\right)

  3. Give an example of an integral domain RR and a nonzero torsion RR -module MM such that Ann(M)=0\operatorname{Ann}\left( M\right) = 0 . Prove that if NN is a finitely generated torsion RR -module then Ann(N)0\operatorname{Ann}\left( N\right) \neq 0 .

  4. 举一个整环 RR 和一个非零扭 RR -模 MM 的例子,使得 Ann(M)=0\operatorname{Ann}\left( M\right) = 0 。证明如果 NN 是一个有限生成的扭 RR -模,那么 Ann(N)0\operatorname{Ann}\left( N\right) \neq 0

  5. For pp a prime in the P.I.D. RR and NN an RR -module prove that the pp -primary component of NN is a submodule of NN and prove that NN is the direct sum of its pp -primary components (there need not be finitely many of them).

  6. 对于 pp 是 P.I.D. RR 中的素数以及 NN 是一个 RR -模,证明 pp -主成分是 NN 的子模,并证明 NN 是其 pp -主成分的直和(这些成分不必是有限的)。

  7. Let RR be a P.I.D.,let aa be a nonzero element of RR and let M=R/(a)M = R/\left( a\right) . For any prime pp of RR prove that

  8. RR 是一个 P.I.D.,aaRR 中的非零元素,且 M=R/(a)M = R/\left( a\right) 。对于 RR 的任意素数 pp 证明

pk1M/pkM{R/(p) if kn0 if k>n,{p}^{k - 1}M/{p}^{k}M \cong \left\{ \begin{array}{ll} R/\left( p\right) & \text{ if }k \leq n \\ 0 & \text{ if }k > n, \end{array}\right.

where nn is the power of pp dividing aa in RR .

其中 nnppRR 中除 aa 的幂。

  1. Let RR be a P.I.D. and let pp be a prime in RR .

  2. RR 是一个 P.I.D.,ppRR 中的一个素数。

(a) Let MM be a finitely generated torsion RR -module. Use the previous exercise to prove that pk1M/pkMFnk{p}^{k - 1}M/{p}^{k}M \cong {F}^{{n}_{k}} where FF is the field R/(p)R/\left( p\right) and nk{n}_{k} is the number of elementary divisors of MM which are powers pα{p}^{\alpha } with αk\alpha \geq k .

(a) 设 MM 是一个有限生成的扭 RR -模。使用前一个练习证明 pk1M/pkMFnk{p}^{k - 1}M/{p}^{k}M \cong {F}^{{n}_{k}} ,其中 FF 是域 R/(p)R/\left( p\right)nk{n}_{k}MM 中是 pα{p}^{\alpha } 的幂的初等除子的个数 αk\alpha \geq k

(b) Suppose M1{M}_{1} and M2{M}_{2} are isomorphic finitely generated torsion RR -modules. Use (a) to prove that,for every k0,M1k \geq 0,{M}_{1} and M2{M}_{2} have the same number of elementary divisors pα{p}^{\alpha } with αk\alpha \geq k . Prove that this implies M1{M}_{1} and M2{M}_{2} have the same set of elementary divisors.

(b) 假设 M1{M}_{1}M2{M}_{2} 是同构的有限生成扭 RR -模。使用 (a) 证明,对于每一个 k0,M1k \geq 0,{M}_{1}M2{M}_{2}M1{M}_{1} 有相同数量的 pα{p}^{\alpha } 的初等除子 αk\alpha \geq k 。证明这意味着 M1{M}_{1}M2{M}_{2} 有相同的初等除子集合。

  1. If MM is a finitely generated module over the P.I.D. RR ,describe the structure of M/Tor(M)M/\operatorname{Tor}\left( M\right) .

  2. 如果 MM 是 P.I.D. RR 上的有限生成模,描述 M/Tor(M)M/\operatorname{Tor}\left( M\right) 的结构。

  3. Let RR be a P.I.D. and let MM be a torsion RR -module. Prove that MM is irreducible (cf. Exercises 9 to 11 of Section 10.3) if and only if M=RmM = {Rm} for any nonzero element mMm \in M where the annihilator of mm is a nonzero prime ideal(p).

  4. RR 是一个 P.I.D.,并且设 MM 是一个扭转 RR -模。证明 MM 是不可约的(参见第10.3节的练习9至11)当且仅当 M=RmM = {Rm} 对于任何非零元素 mMm \in M,其中 mMm \in M 的消去子是 RR 的一个非零素理想(p)。

  5. Prove that if RR is a Noetherian ring then Rn{R}^{n} is a Noetherian RR -module. [Fix a basis of Rn{R}^{n} . If MM is a submodule of Rn{R}^{n} show that the collection of first coordinates of elements of MM is a submodule of RR hence is finitely generated. Let m1,m2,,mk{m}_{1},{m}_{2},\ldots ,{m}_{k} be elements of MM whose first coordinates generate this submodule of RR . Show that any element of MM can be written as an RR -linear combination of m1,m2,,mk{m}_{1},{m}_{2},\ldots ,{m}_{k} plus an element of MM whose first coordinate is 0 . Prove that MRn1M \cap {R}^{n - 1} is a submodule of Rn1{R}^{n - 1} where Rn1{R}^{n - 1} is the set of elements of Rn{R}^{n} with first coordinate 0 and then use induction on nn .

  6. 证明如果 RR 是一个诺特环,那么 Rn{R}^{n} 是一个诺特 RR -模。[固定 Rn{R}^{n} 的一个基。如果 MMRn{R}^{n} 的一个子模,证明 MM 中元素的第一个坐标的集合是 RR 的一个子模,因此是有限生成的。设 m1,m2,,mk{m}_{1},{m}_{2},\ldots ,{m}_{k}MM 的元素,其第一个坐标生成 RR 的这个子模。证明 MM 的任何元素都可以写成 m1,m2,,mk{m}_{1},{m}_{2},\ldots ,{m}_{k}RR -线性组合加上一个第一个坐标为0的 MM 中的元素。证明 MRn1M \cap {R}^{n - 1}Rn1{R}^{n - 1} 的子模,其中 Rn1{R}^{n - 1}Rn{R}^{n} 中第一个坐标为0的元素的集合,然后对 nn 进行归纳。]

The following set of exercises outlines a proof of Theorem 5 in the special case where RR is a Euclidean Domain using a matrix argument involving row and column operations. This applies in particular to the cases R=ZR = \mathbb{Z} and R=F[x]R = F\left\lbrack x\right\rbrack of interest in the applications and is computationally useful.

以下练习集概述了在 RR 是欧几里得域的特殊情况下,使用涉及行和列操作的矩阵论证来证明定理5的证明过程。这特别适用于应用中感兴趣的 R=ZR = \mathbb{Z}R=F[x]R = F\left\lbrack x\right\rbrack 的情况,并且在计算上是有效的。

Let RR be a Euclidean Domain and let MM be an RR -module.

RR 是一个欧几里得域,并且设 MM 是一个 RR -模。

  1. Prove that MM is finitely generated if and only if there is a surjective RR -homomorphism φ:RnM\varphi : {R}^{n} \rightarrow M for some integer nn (this is true for any ring RR ).

  2. 证明 MM 是有限生成的当且仅当存在一个满射 RR -同态 φ:RnM\varphi : {R}^{n} \rightarrow M 对于某个整数 nn(这对于任何环 RR 都成立)。

Suppose φ:RnM\varphi : {R}^{n} \rightarrow M is a surjective RR -module homomorphism. By Exercise 15, kerφ\ker \varphi is finitely generated. If x1,x2,,xn{x}_{1},{x}_{2},\ldots ,{x}_{n} is a basis for Rn{R}^{n} and y1,,ym{y}_{1},\ldots ,{y}_{m} are generators for kerφ\ker \varphi we have

假设 φ:RnM\varphi : {R}^{n} \rightarrow M 是一个满射 RR -模同态。由练习15,kerφ\ker \varphi 是有限生成的。如果 x1,x2,,xn{x}_{1},{x}_{2},\ldots ,{x}_{n}Rn{R}^{n} 的一个基,y1,,ym{y}_{1},\ldots ,{y}_{m}kerφ\ker \varphi 的生成元,那么我们有

yi=ai1x1+ai2x2++ainxn  i=1,2,,m{y}_{i} = {a}_{i1}{x}_{1} + {a}_{i2}{x}_{2} + \cdots + {a}_{in}{x}_{n}\;i = 1,2,\ldots ,m

with coefficients aijR{a}_{ij} \in R . It follows that the homomorphism φ\varphi (hence the module structure of M)M) is determined by the choice of generators for Rn{R}^{n} and the matrix A=(aij)A = \left( {a}_{ij}\right) . Such a matrix AA will be called a relations matrix.

系数为 aijR{a}_{ij} \in R 。因此,同态 φ\varphi (因此 M)M) 的模结构由 Rn{R}^{n} 的生成元的选择和矩阵 A=(aij)A = \left( {a}_{ij}\right) 决定)。这样的矩阵 AA 将被称为关系矩阵。

  1. (a) Show that interchanging xi{x}_{i} and xj{x}_{j} in the basis for Rn{R}^{n} interchanges the ith {i}^{\text{th }} column with the jth {j}^{\text{th }} column in the corresponding relations matrix.

  2. (a) 证明在 Rn{R}^{n} 的基中交换 xi{x}_{i}xj{x}_{j} 会交换对应关系矩阵中的 ith {i}^{\text{th }} 列与 jth {j}^{\text{th }} 列。

(b) Show that,for any aRa \in R ,replacing the element xj{x}_{j} by xjaxi{x}_{j} - a{x}_{i} in the basis for Rn{R}^{n} gives another basis for Rn{R}^{n} and that the corresponding relations matrix for this basis is the same as the original relations matrix except that aa times the jth {j}^{\text{th }} column has been added to the ith {i}^{\text{th }} column. [Note that +aixi++ajxj+=+(ai+\cdots + {a}_{i}{x}_{i} + \cdots + {a}_{j}{x}_{j} + \cdots = \cdots + \left( {{a}_{i} + }\right. aaj)xi++aj(xjaxi)+.]\left. {a{a}_{j}){x}_{i} + \cdots + {a}_{j}\left( {{x}_{j} - a{x}_{i}}\right) + \ldots .}\right\rbrack

(b) 证明,对于任何 aRa \in R ,在 Rn{R}^{n} 的基中用 xjaxi{x}_{j} - a{x}_{i} 替换元素 xj{x}_{j} 给出另一个基,并且这个基的对应关系矩阵与原关系矩阵相同,除了 aa 乘以 jth {j}^{\text{th }} 列被加到了 ith {i}^{\text{th }} 列上。 [注意 +aixi++ajxj+=+(ai+\cdots + {a}_{i}{x}_{i} + \cdots + {a}_{j}{x}_{j} + \cdots = \cdots + \left( {{a}_{i} + }\right. aaj)xi++aj(xjaxi)+.]\left. {a{a}_{j}){x}_{i} + \cdots + {a}_{j}\left( {{x}_{j} - a{x}_{i}}\right) + \ldots .}\right\rbrack]

  1. (a) Show that interchanging the generators yi{y}_{i} and yj{y}_{j} interchanges the ith {i}^{\text{th }} row with the jth {j}^{\text{th }} row in the relations matrix.

  2. (a) 证明交换生成元 yi{y}_{i}yj{y}_{j} 会交换关系矩阵中的 ith {i}^{\text{th }} 行与 jth {j}^{\text{th }} 行。

(b) Show that,for any aRa \in R ,replacing the element yj{y}_{j} by yjayi{y}_{j} - a{y}_{i} gives another set of generators for kerφ\ker \varphi and that the corresponding relations matrix for this choice of generators is the same as the original relations matrix except that a- a times the ith {i}^{\text{th }} row has been added to the jth {j}^{\text{th }} row.

(b) 证明,对于任意的 aRa \in R ,将元素 yj{y}_{j} 替换为 yjayi{y}_{j} - a{y}_{i} 会得到另一组 kerφ\ker \varphi 的生成元,并且对于这个生成元选择的相应关系矩阵与原始关系矩阵相同,除了 a- a 乘以 ith {i}^{\text{th }} 行被加到了 jth {j}^{\text{th }} 行。

  1. By the previous two exercises we may perform elementary row and column operations on a given relations matrix by choosing different generators for Rn{R}^{n} and kerφ\ker \varphi . If all relation matrices are the zero matrix then kerφ=0\ker \varphi = 0 and MRnM \cong {R}^{n} . Otherwise let a1{a}_{1} be the (nonzero) g.c.d. (recall RR is a Euclidean Domain) of all the entries in a fixed initial relations matrix for MM .

  2. 根据前两个练习,我们可以通过为 Rn{R}^{n}kerφ\ker \varphi 选择不同的生成元来对给定关系矩阵执行行和列的基本操作。如果所有关系矩阵都是零矩阵,那么 kerφ=0\ker \varphi = 0MRnM \cong {R}^{n} 。否则,设 a1{a}_{1} 为所有条目(非零)的最大公约数(回顾 RR 是一个欧几里得域)在一个固定的初始关系矩阵的 MM 中。

(a) Prove that by elementary row and column operations we may assume a1{a}_{1} occurs in a relations matrix of the form

(a) 证明通过行和列的基本操作,我们可以假设 a1{a}_{1} 出现在形式为的关系矩阵中

(a1a12a1na21a22a2nam1am2amn)\left( \begin{matrix} {a}_{1} & {a}_{12} & \ldots & {a}_{1n} \\ {a}_{21} & {a}_{22} & \ldots & {a}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ {a}_{m1} & {a}_{m2} & \ldots & {a}_{mn} \end{matrix}\right)

where a1{a}_{1} divides aij,i=1,2,,m,j=1,2,,n{a}_{ij},i = 1,2,\ldots ,m,j = 1,2,\ldots ,n .

其中 a1{a}_{1} 整除 aij,i=1,2,,m,j=1,2,,n{a}_{ij},i = 1,2,\ldots ,m,j = 1,2,\ldots ,n

(b) Prove that there is a relations matrix of the form

(b) 证明存在形式为的关系矩阵

(a1000a22a2n0am2amn)\left( \begin{matrix} {a}_{1} & 0 & \ldots & 0 \\ 0 & {a}_{22} & \ldots & {a}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & {a}_{m2} & \ldots & {a}_{mn} \end{matrix}\right)

where a1{a}_{1} divides all the entries.

其中 a1{a}_{1} 整除所有条目。

(c) Let a2{a}_{2} be a g.c.d. of all the entries except the element a1{a}_{1} in the relations matrix in (b). Prove that there is a relations matrix of the form

(c) 设 a2{a}_{2} 为除了元素 a1{a}_{1} 之外所有条目的最大公约数,在 (b) 中的关系矩阵中。证明存在形式为的关系矩阵

(a10000a20000a33a3n00am3amn)\left( \begin{matrix} {a}_{1} & 0 & 0 & \ldots & 0 \\ 0 & {a}_{2} & 0 & \ldots & 0 \\ 0 & 0 & {a}_{33} & \ldots & {a}_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & {a}_{m3} & \ldots & {a}_{mn} \end{matrix}\right)

where a1{a}_{1} divides a2{a}_{2} and a2{a}_{2} divides all the other entries of the matrix.

其中 a1{a}_{1} 整除 a2{a}_{2}a2{a}_{2} 整除矩阵中的其他所有条目。

(d) Prove that there is a relations matrix of the form (D000)\left( \begin{matrix} D & 0 \\ 0 & 0 \end{matrix}\right) where DD is a diagonal matrix with nonzero entries a1,a2,,ak,kn{a}_{1},{a}_{2},\ldots ,{a}_{k},k \leq n ,satisfying

(d) 证明存在形式为 (D000)\left( \begin{matrix} D & 0 \\ 0 & 0 \end{matrix}\right) 的关系矩阵,其中 DD 是一个对角矩阵,其非零条目为 a1,a2,,ak,kn{a}_{1},{a}_{2},\ldots ,{a}_{k},k \leq n ,满足

a1a2ak.{a}_{1}\left| {a}_{2}\right| \cdots \mid {a}_{k}\text{.}

Conclude that

结论是

MR/(a1)R/(a2)R/(ak)Rnk.M \cong R/\left( {a}_{1}\right) \oplus R/\left( {a}_{2}\right) \oplus \cdots \oplus R/\left( {a}_{k}\right) \oplus {R}^{n - k}.

If nn is not the minimal number of generators required for MM then some of the initial elements a1,a2,{a}_{1},{a}_{2},\ldots above will be units,so the corresponding direct summands above will be 0 . If we remove these irrelevant factors we have produced the invariant factors of the module MM . Further,the image of the new generators for Rn{R}^{n} corresponding to the direct summands above will then be a set of RR -generators for the cyclic submodules of MM in its invariant factor decomposition (note that the image in MM of the generators corresponding to factors with ai{a}_{i} a unit will be 0 ). The column operations performed in the relations matrix reduction correspond to changing the basis used for Rn{R}^{n} as described in Exercise 17:

如果 nn 不是 MM 所需的最小生成元数目,那么上述某些初始元素 a1,a2,{a}_{1},{a}_{2},\ldots 将为单位元,因此上述相应的直和项将为 0。如果我们移除这些无关因子,就得到了模 MM 的不变因子。进一步地,对应于上述直和项的新生成元在 Rn{R}^{n} 下的像将是一组 RR -生成元,用于 MM 在其不变因子分解中的循环子模(注意,MM 中对应于单位元因子的生成元的像将为 0)。在关系矩阵化简中执行的列操作对应于改变用于 Rn{R}^{n} 的基,如练习 17 中所述:

(a) Interchanging the ith {i}^{\text{th }} column with the jth {j}^{\text{th }} column corresponds to interchanging the ith {i}^{\text{th }} and jth {j}^{\text{th }} elements in the basis for Rn{R}^{n} .

(a) 交换 ith {i}^{\text{th }} 列与 jth {j}^{\text{th }} 列对应于在 Rn{R}^{n} 的基中交换 ith {i}^{\text{th }}jth {j}^{\text{th }} 元素。

(b) For any aRa \in R ,adding aa times the jth {j}^{\text{th }} column to the ith {i}^{\text{th }} column corresponds to subtracting aa times the ith {i}^{\text{th }} basis element from the jth {j}^{\text{th }} basis element.

(b) 对于任何 aRa \in R ,将 aa 倍的 jth {j}^{\text{th }} 列加到 ith {i}^{\text{th }} 列上对应于从 jth {j}^{\text{th }} 基元素中减去 aa 倍的 ith {i}^{\text{th }} 基元素。

Keeping track of the column operations performed and changing the initial choice of generators for MM in the same way therefore gives a set of RR -generators for the cyclic submodules of MM in its invariant factor decomposition.

记录执行的列操作并按照相同方式改变 MM 的初始生成元选择,因此可以得到 MM 在其不变因子分解中的循环子模的一组 RR -生成元。

This process is quite fast computationally once an initial set of generators for MM and initial relations matrix are determined. The element a1{a}_{1} is determined using the Euclidean Algorithm as the g.c.d. of the elements in the initial relations matrix. Using the row and column operations we can obtain the appropriate linear combination of the entries to produce this g.c.d. in the (1,1)-position of a new relations matrix. One then subtracts the appropriate multiple of the first column and first row to obtain a matrix as in Exercise 19(b), then iterates this process. Some examples of this procedure in a special case are given at the end of the following section.

这个过程在确定了MM的一组初始生成元和初始关系矩阵后,在计算上相当快速。元素a1{a}_{1}通过欧几里得算法确定为初始关系矩阵中元素的最大公约数(g.c.d.)。使用行列操作,我们可以得到适当的线性组合,使得这个最大公约数出现在新关系矩阵的(1,1)位置。然后减去第一列和第一行的适当倍数,得到如练习19(b)中的矩阵,然后重复这个过程。在下一节的末尾给出了这个程序在特殊情况下的例子。

  1. Let RR be an integral domain with quotient field FF and let MM be any RR -module. Prove that the rank of MM equals the dimension of the vector space FRMF{ \otimes }_{R}M over FF .

  2. RR是一个整环,其分式域为FF,设MM为任意RR-模。证明MM的秩等于向量空间FRMF{ \otimes }_{R}MFF上的维数。

  3. Prove that a finitely generated module over a P.I.D. is projective if and only if it is free.

  4. 证明在主理想整环上的有限生成模是投射的当且仅当它是自由的。

  5. Let RR be a P.I.D. that is not a field. Prove that no finitely generated RR -module is injective. [Use Exercise 4, Section 10.5 to consider torsion and free modules separately.]

  6. RR是一个不是域的主理想整环。证明没有有限生成的RR-模是可内射的。[使用10.5节的练习4,分别考虑扭元和自由模。]