注射模

34 阅读5分钟

Injective Modules and HomR(__,D){\operatorname{Hom}}_{R}\left( {\_ \_ ,D}\right)

注射模块和 HomR(__,D){\operatorname{Hom}}_{R}\left( {\_ \_ ,D}\right)

If 0LψMφN00 \rightarrow L\overset{\psi }{ \rightarrow }M\overset{\varphi }{ \rightarrow }N \rightarrow 0 is a short exact sequence of RR -modules then,instead of considering maps from an RR -module DD into LL or NN and the extent to which these determine maps from DD into MM ,we can consider the "dual" question of maps from LL or NN to DD . In this case,it is easy to dispose of the situation of a map from NN to DD : an RR -module map from NN to DD immediately gives a map from MM to DD simply by composing with φ\varphi . It is easy to check that this defines an injective homomorphism of abelian groups

如果 0LψMφN00 \rightarrow L\overset{\psi }{ \rightarrow }M\overset{\varphi }{ \rightarrow }N \rightarrow 0 是一个 RR -模的短正合序列,那么,我们不必考虑从 RR -模 DDLLNN 的映射,以及这些映射在多大程度上决定了从 DDMM 的映射,而是可以考虑“对偶”问题,即从 LLNNDD 的映射。在这种情况下,很容易处理从 NNDD 的映射情况:一个从 NNDDRR -模映射,通过简单地与 φ\varphi 结合,立即给出了从 MMDD 的映射。很容易验证这定义了一个阿贝尔群的注入同态。

φ:HomR(N,D)HomR(M,D){\varphi }^{\prime } : {\operatorname{Hom}}_{R}\left( {N,D}\right) \rightarrow {\operatorname{Hom}}_{R}\left( {M,D}\right)
ff=fφf \mapsto {f}^{\prime } = f \circ \varphi

or, put another way,

或者换句话说,

ifMφN0is exact,\text{if}M\overset{\varphi }{ \rightarrow }N \rightarrow 0\text{is exact,}

then 0HomR(N,D)φHomR(M,D)0 \rightarrow {\operatorname{Hom}}_{R}\left( {N,D}\right) \overset{{\varphi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {M,D}\right) is exact.

那么 0HomR(N,D)φHomR(M,D)0 \rightarrow {\operatorname{Hom}}_{R}\left( {N,D}\right) \overset{{\varphi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {M,D}\right) 是精确的。

(Note that the associated maps on the homomorphism groups are in the reverse direction from the original maps.)

(注意,同态群上的相关映射与原始映射的方向相反。)

On the other hand,given an RR -module homomorphism ff from LL to DD it may not be possible to extend ff to a map FF from MM to DD ,i.e.,given ff it may not be possible to find a map FF making the following diagram commute:

另一方面,给定一个从 LLDDRR -模同态 ff,可能无法将 ff 扩展为从 MMDD 的映射 FF,即给定 ff 后,可能无法找到一个使以下图表成立的映射 FF

For example,consider the exact sequence 0ZψZφZ/2Z00 \rightarrow \mathbb{Z}\overset{\psi }{ \rightarrow }\mathbb{Z}\overset{\varphi }{ \rightarrow }\mathbb{Z}/2\mathbb{Z} \rightarrow 0 of Z\mathbb{Z} -modules,where ψ\psi is multiplication by 2 and φ\varphi is the natural projection. Take D=Z/2ZD = \mathbb{Z}/2\mathbb{Z} and let f:ZZ/2Zf : \mathbb{Z} \rightarrow \mathbb{Z}/2\mathbb{Z} be reduction modulo 2 on the first Z\mathbb{Z} in the sequence. There is only one nonzero homomorphism FF from the second Z\mathbb{Z} in the sequence to Z/2Z\mathbb{Z}/2\mathbb{Z} (namely,reduction modulo 2),but this FF does not lift the map ff since Fψ(Z)=F(2Z)=0F \circ \psi \left( \mathbb{Z}\right) = F\left( {2\mathbb{Z}}\right) = 0 ,so FψfF \circ \psi \neq f .

例如,考虑确切序列 0ZψZφZ/2Z00 \rightarrow \mathbb{Z}\overset{\psi }{ \rightarrow }\mathbb{Z}\overset{\varphi }{ \rightarrow }\mathbb{Z}/2\mathbb{Z} \rightarrow 0Z\mathbb{Z} -模,其中 ψ\psi 是乘以2,φ\varphi 是自然投影。取 D=Z/2ZD = \mathbb{Z}/2\mathbb{Z} 并让 f:ZZ/2Zf : \mathbb{Z} \rightarrow \mathbb{Z}/2\mathbb{Z} 是序列中第一个 Z\mathbb{Z} 的模2约化。序列中的第二个 Z\mathbb{Z}Z/2Z\mathbb{Z}/2\mathbb{Z} 只存在一个非零同态 FF(即模2约化),但这个 FF 不能提升映射 ff,因为 Fψ(Z)=F(2Z)=0F \circ \psi \left( \mathbb{Z}\right) = F\left( {2\mathbb{Z}}\right) = 0,所以 FψfF \circ \psi \neq f

Composition with ψ\psi induces an abelian group homomorphism ψ{\psi }^{\prime } from HomR(M,D){\mathrm{{Hom}}}_{R}\left( {M,D}\right) to HomR(L,D){\operatorname{Hom}}_{R}\left( {L,D}\right) ,and in terms of the map ψ{\psi }^{\prime } ,the homomorphism fHomR(L,D)f \in {\operatorname{Hom}}_{R}\left( {L,D}\right) can be lifted to a homomorphism from MM to DD if and only if ff is in the image of ψ{\psi }^{\prime } . The example above shows that

ψ\psi 的复合诱导出一个从 HomR(M,D){\mathrm{{Hom}}}_{R}\left( {M,D}\right)HomR(L,D){\operatorname{Hom}}_{R}\left( {L,D}\right) 的阿贝尔群同态 ψ{\psi }^{\prime },并且就映射 ψ{\psi }^{\prime } 而言,当且仅当 ffψ{\psi }^{\prime } 的像中时,同态 fHomR(L,D)f \in {\operatorname{Hom}}_{R}\left( {L,D}\right) 可以提升为从 MMDD 的同态。上面的例子表明

if0LψMis exact,\text{if}0 \rightarrow L\overset{\psi }{ \rightarrow }M\text{is exact,}

then   HomR(M,D)ψHomR(L,D)0\;{\operatorname{Hom}}_{R}\left( {M,D}\right) \overset{{\psi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {L,D}\right) \rightarrow 0 is not necessarily exact.

那么   HomR(M,D)ψHomR(L,D)0\;{\operatorname{Hom}}_{R}\left( {M,D}\right) \overset{{\psi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {L,D}\right) \rightarrow 0 不一定是确切的。

We can summarize these results in the following dual version of Theorem 28:

我们可以将这些结果总结为定理28的对偶版本如下:

Theorem 33. Let D,L,MD,L,M ,and NN be RR -modules. If

定理33。设 D,L,MD,L,MNNRR -模。如果

0LψMφN0is exact,0 \rightarrow L\overset{\psi }{ \rightarrow }M\overset{\varphi }{ \rightarrow }N \rightarrow 0\text{is exact,}

then the associated sequence

那么关联的序列

0HomR(N,D)φHomR(M,D)ψHomR(L,D)is exact.(10.12)0 \rightarrow {\operatorname{Hom}}_{R}\left( {N,D}\right) \overset{{\varphi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {M,D}\right) \overset{{\psi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {L,D}\right) \text{is exact.} \tag{10.12}

A homomorphism f:LDf : L \rightarrow D lifts to a homomorphism F:MDF : M \rightarrow D if and only if fHomR(L,D)f \in {\operatorname{Hom}}_{R}\left( {L,D}\right) is in the image of ψ{\psi }^{\prime } . In general ψ:HomR(M,D)HomR(L,D){\psi }^{\prime } : {\operatorname{Hom}}_{R}\left( {M,D}\right) \rightarrow {\operatorname{Hom}}_{R}\left( {L,D}\right) need not be surjective; the map ψ{\psi }^{\prime } is surjective if and only if every homomorphism from LL to DD lifts to a homomorphism from MM to DD ,in which case the sequence (12) can be extended to a short exact sequence.

一个同态 f:LDf : L \rightarrow D 提升为同态 F:MDF : M \rightarrow D 当且仅当 fHomR(L,D)f \in {\operatorname{Hom}}_{R}\left( {L,D}\right)ψ{\psi }^{\prime } 的像中。一般来说 ψ:HomR(M,D)HomR(L,D){\psi }^{\prime } : {\operatorname{Hom}}_{R}\left( {M,D}\right) \rightarrow {\operatorname{Hom}}_{R}\left( {L,D}\right) 不一定是满射;映射 ψ{\psi }^{\prime } 是满射当且仅当从 LLDD 的每个同态都可以提升为从 MMDD 的同态,在这种情况下序列(12)可以扩展为一个短确切序列。

The sequence (12) is exact for all RR -modules DD if and only if the sequence

序列 (12) 对于所有 RR -模块 DD 是精确的当且仅当序列

LψMφN0 is exact. L\overset{\psi }{ \rightarrow }M\overset{\varphi }{ \rightarrow }N \rightarrow 0\text{ is exact. }

Proof: The only item remaining to be proved in the first statement is the exactness of (12) at HomR(M,D){\operatorname{Hom}}_{R}\left( {M,D}\right) . The proof of this statement is very similar to the proof of the corresponding result in Theorem 28 and is left as an exercise. Note also that the injectivity of ψ\psi is not required,which proves the "if" portion of the final statement of the theorem.

证明:在第一个陈述中唯一需要证明的是序列 (12) 在 HomR(M,D){\operatorname{Hom}}_{R}\left( {M,D}\right) 处的精确性。这个陈述的证明与定理 28 中相应结果的证明非常相似,留作练习。注意,ψ\psi 的单射性不是必需的,这证明了定理最后陈述的“如果”部分。

Suppose now that the sequence (12) is exact for all RR -modules DD . We first show that φ:MN\varphi : M \rightarrow N is a surjection. Take D=N/φ(M)D = N/\varphi \left( M\right) . If π1:NN/φ(M){\pi }_{1} : N \rightarrow N/\varphi \left( M\right) is the natural projection homomorphism,then π1φ(M)=0{\pi }_{1} \circ \varphi \left( M\right) = 0 by definition of π1{\pi }_{1} . Since π1φ=φ(π1){\pi }_{1} \circ \varphi = {\varphi }^{\prime }\left( {\pi }_{1}\right) ,this means that the element π1HomR(N,N/φ(M)){\pi }_{1} \in {\mathrm{{Hom}}}_{R}\left( {N,N/\varphi \left( M\right) }\right) is mapped to 0 by φ{\varphi }^{\prime } . Since φ{\varphi }^{\prime } is assumed to be injective for all modules DD ,this means π1{\pi }_{1} is the zero map,i.e., N=φ(M)N = \varphi \left( M\right) and so φ\varphi is a surjection. We next show that φψ=0\varphi \circ \psi = 0 ,which will imply that image ψkerφ\psi \subseteq \ker \varphi . For this we take D=ND = N and observe that the identity mapidN\operatorname{map}i{d}_{N} on NN is contained in HomR(N,N){\operatorname{Hom}}_{R}\left( {N,N}\right) ,hence φ(idN)HomR(M,N){\varphi }^{\prime }\left( {i{d}_{N}}\right) \in {\operatorname{Hom}}_{R}\left( {M,N}\right) . Then the exactness of (12) for D=ND = N implies that φ(idN)kerψ{\varphi }^{\prime }\left( {i{d}_{N}}\right) \in \ker {\psi }^{\prime } ,so ψ(φ(idN))=0{\psi }^{\prime }\left( {{\varphi }^{\prime }\left( {i{d}_{N}}\right) }\right) = 0 . Then idNψφ=0,{\text{id}}_{N} \circ \psi \circ \varphi = 0, i.e., ψφ=0,\psi \circ \varphi = 0, as claimed. Finally,we show that kerφimage  ψ.\ker \varphi \subseteq \mathrm{{image}}\;\psi . Let D=M/ψ(L)D = M/\psi \left( L\right) and let π2:MM/ψ(L){\pi }_{2} : M \rightarrow M/\psi \left( L\right) be the natural projection. Then ψ(π2)=0{\psi }^{\prime }\left( {\pi }_{2}\right) = 0 since π2(ψ(L))=0{\pi }_{2}\left( {\psi \left( L\right) }\right) = 0 by definition of π2{\pi }_{2} . The exactness of (12) for this DD then implies that π2{\pi }_{2} is in the image of φ{\varphi }^{\prime } ,say π2=φ(f){\pi }_{2} = {\varphi }^{\prime }\left( f\right) for some homomorphism fHomR(N,M/ψ(L)),f \in {\operatorname{Hom}}_{R}\left( {N,M/\psi \left( L\right) }\right) , i.e., π2=fφ.{\pi }_{2} = f \circ \varphi . If mkerφm \in \ker \varphi then π2(m)=f(φ(m))=0,{\pi }_{2}\left( m\right) = f\left( {\varphi \left( m\right) }\right) = 0, which means that mψ(L)m \in \psi \left( L\right) since π2{\pi }_{2} is just the projection from MM into the quotient M/ψ(L)M/\psi \left( L\right) . Hence kerφ\ker \varphi \subseteq image ψ\psi ,completing the proof.

假设现在序列 (12) 对所有 RR -模块 DD 都是精确的。我们首先证明 φ:MN\varphi : M \rightarrow N 是满射。取 D=N/φ(M)D = N/\varphi \left( M\right) 。如果 π1:NN/φ(M){\pi }_{1} : N \rightarrow N/\varphi \left( M\right) 是自然投影同态,那么根据 π1{\pi }_{1} 的定义,π1φ(M)=0{\pi }_{1} \circ \varphi \left( M\right) = 0 。由于 π1φ=φ(π1){\pi }_{1} \circ \varphi = {\varphi }^{\prime }\left( {\pi }_{1}\right) ,这意味着元素 π1HomR(N,N/φ(M)){\pi }_{1} \in {\mathrm{{Hom}}}_{R}\left( {N,N/\varphi \left( M\right) }\right)φ{\varphi }^{\prime } 映射到 0。由于假设 φ{\varphi }^{\prime } 对所有模块 DD 都是单射,这意味着 π1{\pi }_{1} 是零映射,即 N=φ(M)N = \varphi \left( M\right) ,因此 φ\varphi 是满射。接下来我们证明 φψ=0\varphi \circ \psi = 0 ,这将意味着像 ψkerφ\psi \subseteq \ker \varphi 。为此我们取 D=ND = N 并观察到在 NN 上的恒等式 mapidN\operatorname{map}i{d}_{N} 包含在 HomR(N,N){\operatorname{Hom}}_{R}\left( {N,N}\right) 中,因此 φ(idN)HomR(M,N){\varphi }^{\prime }\left( {i{d}_{N}}\right) \in {\operatorname{Hom}}_{R}\left( {M,N}\right) 。那么序列 (12) 对 D=ND = N 的精确性意味着 φ(idN)kerψ{\varphi }^{\prime }\left( {i{d}_{N}}\right) \in \ker {\psi }^{\prime } ,所以 ψ(φ(idN))=0{\psi }^{\prime }\left( {{\varphi }^{\prime }\left( {i{d}_{N}}\right) }\right) = 0 。那么 idNψφ=0,{\text{id}}_{N} \circ \psi \circ \varphi = 0, ,即 ψφ=0,\psi \circ \varphi = 0, 如所声称的。最后,我们证明 kerφimage  ψ.\ker \varphi \subseteq \mathrm{{image}}\;\psi . 。设 D=M/ψ(L)D = M/\psi \left( L\right) 并设 π2:MM/ψ(L){\pi }_{2} : M \rightarrow M/\psi \left( L\right) 为自然投影。那么 ψ(π2)=0{\psi }^{\prime }\left( {\pi }_{2}\right) = 0 ,因为根据 π2{\pi }_{2} 的定义 π2(ψ(L))=0{\pi }_{2}\left( {\psi \left( L\right) }\right) = 0 。这个 DD 的序列 (12) 的精确性意味着 π2{\pi }_{2}φ{\varphi }^{\prime } 的像中,即存在某个同态 fHomR(N,M/ψ(L)),f \in {\operatorname{Hom}}_{R}\left( {N,M/\psi \left( L\right) }\right) , 使得 π2=φ(f){\pi }_{2} = {\varphi }^{\prime }\left( f\right) ,即 π2=fφ.{\pi }_{2} = f \circ \varphi . 。如果 mkerφm \in \ker \varphi ,那么 π2(m)=f(φ(m))=0,{\pi }_{2}\left( m\right) = f\left( {\varphi \left( m\right) }\right) = 0, ,这意味着 mψ(L)m \in \psi \left( L\right) ,因为 π2{\pi }_{2} 只是从 MM 到商 M/ψ(L)M/\psi \left( L\right) 的投影。因此 kerφ\ker \varphi \subseteq 像是 ψ\psi ,完成了证明。

By Theorem 33, the sequence

根据定理 33,序列

0HomR(N,D)φHomR(M,D)ψHomR(L,D)00 \rightarrow {\operatorname{Hom}}_{R}\left( {N,D}\right) \overset{{\varphi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {M,D}\right) \overset{{\psi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {L,D}\right) \rightarrow 0

is in general not a short exact sequence since ψ{\psi }^{\prime } need not be surjective,and the question of whether this sequence is exact precisely measures the extent to which homomorphisms from MM to DD are uniquely determined by pairs of homomorphisms from LL and NN to DD .

通常来说,这并不是一个短正合序列,因为 ψ{\psi }^{\prime } 不一定是满射,而这个问题是否精确地衡量了从 MMDD 的同态是否由从 LLNNDD 的同态对唯一确定。

The second statement in Proposition 29 shows that this sequence is exact when the original exact sequence 0LMN00 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0 is a split exact sequence. In fact in this case the sequence 0HomR(N,D)φHomR(M,D)ψHomR(L,D)00 \rightarrow {\operatorname{Hom}}_{R}\left( {N,D}\right) \overset{{\varphi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {M,D}\right) \overset{{\psi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {L,D}\right) \rightarrow 0 is also a split exact sequence of abelian groups for every RR -module DD . Exercise 14 shows that a converse holds: if 0HomR(N,D)φHomR(M,D)ψHomR(L,D)00 \rightarrow {\operatorname{Hom}}_{R}\left( {N,D}\right) \overset{{\varphi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {M,D}\right) \overset{{\psi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {L,D}\right) \rightarrow 0 is exact for every RR -module DD then 0LψMφN00 \rightarrow L\overset{\psi }{ \rightarrow }M\overset{\varphi }{ \rightarrow }N \rightarrow 0 is a split short exact sequence (which then implies that if the Hom sequence is exact for every DD ,then in fact it is split exact for every DD ).

命题29中的第二个陈述表明,当原始的短正合序列 0LMN00 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0 是分裂正合序列时,这个序列是正合的。实际上,在这种情况下,序列 0HomR(N,D)φHomR(M,D)ψHomR(L,D)00 \rightarrow {\operatorname{Hom}}_{R}\left( {N,D}\right) \overset{{\varphi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {M,D}\right) \overset{{\psi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {L,D}\right) \rightarrow 0 对于每个 RR -模 DD 也是分裂正合序列。练习14表明一个逆命题成立:如果 0HomR(N,D)φHomR(M,D)ψHomR(L,D)00 \rightarrow {\operatorname{Hom}}_{R}\left( {N,D}\right) \overset{{\varphi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {M,D}\right) \overset{{\psi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {L,D}\right) \rightarrow 0 对于每个 RR -模 DD 都是正合的,那么 0LψMφN00 \rightarrow L\overset{\psi }{ \rightarrow }M\overset{\varphi }{ \rightarrow }N \rightarrow 0 是一个分裂的短正合序列(这进而意味着如果 Hom 序列对于每个 DD 是正合的,那么实际上它对于每个 DD 也是分裂正合的)。

There is also a dual version of the first three parts of Proposition 30, which describes the R-modules D\textit{R-modules }\textit{D} having the property that the sequence (12)\left( \frac{1}{2}\right) in Theorem 32\frac{3}{2} can always be extended to a short exact sequence:

命题30的前三部分也有一个对偶版本,它描述了 R-modules D\textit{R-modules }\textit{D} 具有这样的性质:定理 32\frac{3}{2} 中的序列 (12)\left( \frac{1}{2}\right) 总是可以扩展为一个短正合序列:

Proposition 34. Let QQ be an RR -module. Then the following are equivalent:

命题34。设 QQ 是一个 RR -模。那么以下条件是等价的:

(1) For any RR -modules L,ML,M ,and NN ,if

(1)对于任何 RR -模 L,ML,MNN ,如果

0LψMφN00 \rightarrow L\overset{\psi }{ \rightarrow }M\overset{\varphi }{ \rightarrow }N \rightarrow 0

is a short exact sequence, then

是一个短正合序列,那么

0HomR(N,Q)φHomR(M,Q)ψHomR(L,Q)00 \rightarrow {\operatorname{Hom}}_{R}\left( {N,Q}\right) \overset{{\varphi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {M,Q}\right) \overset{{\psi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {L,Q}\right) \rightarrow 0

is also a short exact sequence.

也是一个短正合序列。

(2) For any RR -modules LL and MM ,if 0LψM0 \rightarrow L\overset{\psi }{ \rightarrow }M is exact,then every RR -module homomorphism from LL into QQ lifts to an RR -module homomorphism of MM into QQ ,i.e.,given fHomR(L,Q)f \in {\operatorname{Hom}}_{R}\left( {L,Q}\right) there is a lift FHomR(M,Q)F \in {\operatorname{Hom}}_{R}\left( {M,Q}\right) making the following diagram commute:

(2) 对于任意的 RR -模块 LLMM ,如果 0LψM0 \rightarrow L\overset{\psi }{ \rightarrow }M 是精确的,那么从 LLQQ 的每个 RR -模块同态都可以提升为从 MMQQRR -模块同态,即给定 fHomR(L,Q)f \in {\operatorname{Hom}}_{R}\left( {L,Q}\right) 存在一个提升 FHomR(M,Q)F \in {\operatorname{Hom}}_{R}\left( {M,Q}\right) 使得以下图表可交换:

(3) If QQ is a submodule of the RR -module MM then QQ is a direct summand of MM ,i.e., every short exact sequence 0QMN00 \rightarrow Q \rightarrow M \rightarrow N \rightarrow 0 splits.

(3) 如果 QQRR -模块 MM 的子模块,那么 QQMM 的直和项,即每个短精确序列 0QMN00 \rightarrow Q \rightarrow M \rightarrow N \rightarrow 0 都可以分解。

Proof: The equivalence of (1) and (2) is part of Theorem 33. Suppose now that (2) is satisfied and let 0QψMφN00 \rightarrow Q\overset{\psi }{ \rightarrow }M\overset{\varphi }{ \rightarrow }N \rightarrow 0 be exact. Taking L=QL = Q and ff the identity map from QQ to itself,it follows by (2) that there is a homomorphism F:MQF : M \rightarrow Q with Fψ=1F \circ \psi = 1 ,so FF is a splitting homomorphism for the sequence,which proves (3). The proof that (3) implies (2) is outlined in the exercises.

证明: (1) 和 (2) 的等价性是定理33的一部分。现在假设 (2) 成立,并且让 0QψMφN00 \rightarrow Q\overset{\psi }{ \rightarrow }M\overset{\varphi }{ \rightarrow }N \rightarrow 0 是精确的。取 L=QL = Qff 为从 QQ 到其自身的恒等映射,根据 (2) 可知存在一个同态 F:MQF : M \rightarrow Q 使得 Fψ=1F \circ \psi = 1 ,因此 FF 是该序列的分解同态,这证明了 (3)。 (3) 推导出 (2) 的证明在练习中概述。

Definition. An RR -module QQ is called injective if it satisfies any of the equivalent conditions of Proposition 34.

定义。一个 RR -模块 QQ 如果满足命题34中的任何等价条件,则称为可注入的。

The third statement in Proposition 34 can be rephrased as saying that any module MM into which QQ injects has (an isomorphic copy of) QQ as a direct summand,which explains the terminology.

命题34中的第三条陈述可以重新表述为:任何 MM 模块,如果 QQ 可以注入其中,则具有(一个同构副本的)QQ 作为直和项,这解释了术语的使用。

If DD is fixed,then given any RR -module XX we have an associated abelian group HomR(X,D){\operatorname{Hom}}_{R}\left( {X,D}\right) . Further,an RR -module homomorphism α:XY\alpha : X \rightarrow Y induces an abelian group homomorphism α:HomR(Y,D)HomR(X,D){\alpha }^{\prime } : {\operatorname{Hom}}_{R}\left( {Y,D}\right) \rightarrow {\operatorname{Hom}}_{R}\left( {X,D}\right) ,defined by α(f)=fα{\alpha }^{\prime }\left( f\right) = f \circ \alpha , that “reverses” the direction of the arrow. Put another way,the map HomR(D,  ){\operatorname{Hom}}_{R}\left( {D,\underline{\;}}\right) is a contravariantfunctorfrom the category of  R-modulesto the category of abelian groups\begin{matrix} \text{contravariant} \\ \text{functor} \\ \text{from the category of}\;R\text{-modules} \\ \text{to the category of abelian groups} \end{matrix} (cf. Appendix II). Theorem 33 shows that applying this functor to the terms in the exact sequence

如果 DD 是固定的,那么对于任意的 RR -模 XX,我们有一个相关的阿贝尔群 HomR(X,D){\operatorname{Hom}}_{R}\left( {X,D}\right)。进一步地,一个 RR -模同态 α:XY\alpha : X \rightarrow Y 诱导出一个阿贝尔群同态 α:HomR(Y,D)HomR(X,D){\alpha }^{\prime } : {\operatorname{Hom}}_{R}\left( {Y,D}\right) \rightarrow {\operatorname{Hom}}_{R}\left( {X,D}\right),由 α(f)=fα{\alpha }^{\prime }\left( f\right) = f \circ \alpha 定义,它“逆转”了箭头的方向。换句话说,映射 HomR(D,  ){\operatorname{Hom}}_{R}\left( {D,\underline{\;}}\right) 是一个 contravariantfunctorfrom the category of  R-modulesto the category of abelian groups\begin{matrix} \text{contravariant} \\ \text{functor} \\ \text{from the category of}\;R\text{-modules} \\ \text{to the category of abelian groups} \end{matrix}(参见附录II)。定理33表明,将这个函子应用于精确序列中的项

0LψMφN00 \rightarrow L\overset{\psi }{ \rightarrow }M\overset{\varphi }{ \rightarrow }N \rightarrow 0

produces an exact sequence

产生一个精确序列

0HomR(N,D)φHomR(M,D)ψHomR(L,D).0 \rightarrow {\operatorname{Hom}}_{R}\left( {N,D}\right) \overset{{\varphi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {M,D}\right) \overset{{\psi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {L,D}\right) .

This is referred to by saying that HomR(_,D){\operatorname{Hom}}_{R}\left( {\_ ,D}\right) is a left exact (contravariant) functor. Note that the functor HomR(_,D){\operatorname{Hom}}_{R}\left( {\_ ,D}\right) and the functor HomR(D,_){\operatorname{Hom}}_{R}\left( {D,\_ }\right) considered earlier are both left exact; the former reverses the directions of the maps in the original short exact sequence, the latter maintains the directions of the maps.

这被称作 HomR(_,D){\operatorname{Hom}}_{R}\left( {\_ ,D}\right) 是一个左精确(反对称)函子。注意,函子 HomR(_,D){\operatorname{Hom}}_{R}\left( {\_ ,D}\right) 和之前考虑的函子 HomR(D,_){\operatorname{Hom}}_{R}\left( {D,\_ }\right) 都是左精确的;前者逆转了原始短精确序列中映射的方向,后者保持了映射的方向。

By Proposition 34,the functor HomR(__,D){\mathrm{{Hom}}}_{R}\left( {\_ \_ ,D}\right) is exact,i.e.,always takes short exact sequences to short exact sequences (and hence exact sequences of any length to exact sequences), if and only if DD is injective. We summarize this in the following proposition, which is dual to the covariant result of Corollary 32.

根据命题34,函子 HomR(__,D){\mathrm{{Hom}}}_{R}\left( {\_ \_ ,D}\right) 是精确的,即总是将短精确序列映射到短精确序列(因此也将任意长度的精确序列映射到精确序列),当且仅当 DD 是可注入的。我们在以下命题中总结这一点,该命题是32号推论的协变结果的对偶。

Corollary 35. If DD is an RR -module,then the functor HomR(__,D){\operatorname{Hom}}_{R}\left( {\_ \_ ,D}\right) from the category of RR -modules to the category of abelian groups is left exact. It is exact if and only if DD is an injective RR -module.

推论35。如果 DD 是一个 RR -模,那么从 RR -模范畴到阿贝尔群范畴的函子 HomR(__,D){\operatorname{Hom}}_{R}\left( {\_ \_ ,D}\right) 是左精确的。当且仅当 DD 是一个可注入的 RR -模时,它是精确的。

We have seen that an RR -module is projective if and only if it is a direct summand of a free RR -module. Providing such a simple characterization of injective RR -modules is not so easy. The next result gives a criterion for QQ to be an injective RR -module (a result due to Baer, who introduced the notion of injective modules around 1940), and using it we can give a characterization of injective modules when R=ZR = \mathbb{Z} (or,more generally,when RR is a P.I.D.). Recall that a Z\mathbb{Z} -module AA (i.e.,an abelian group,written additively) is said to be divisible if A=nAA = {nA} for all nonzero integers nn . For example, both Q\mathbb{Q} and Q/Z\mathbb{Q}/\mathbb{Z} are divisible (cf. Exercises 18 and 19 in Section 2.4 and Exercise 15 in Section 3.1).

我们已经看到,一个 RR -模是投射的当且仅当它是自由 RR -模的直接和项。给出一个如此简单的注入 RR -模的特征并不是那么容易。下一个结果给出了 QQ 为注入 RR -模的一个准则(Baer 的结果,他在大约1940年引入了可注入模的概念),使用它我们可以给出当 R=ZR = \mathbb{Z} (或者更一般地,当 RR 是一个P.I.D.时)注入模的特征。回顾一下,一个 Z\mathbb{Z} -模 AA(即,一个加法书写的阿贝尔群)被称为可除的,如果 A=nAA = {nA} 对于所有非零整数 nn 成立。例如,Q\mathbb{Q}Q/Z\mathbb{Q}/\mathbb{Z} 都是可除的(参见第2.4节的练习18和19以及第3.1节的练习15)。

Proposition 36. Let QQ be an RR -module.

命题36。设 QQ 是一个 RR -模。

(1) (Baer’s Criterion) The module QQ is injective if and only if for every left ideal II of RR any RR -modulehomomorphism g:IQg : I \rightarrow Q can be extended to an RR -module homomorphism G:RQG : R \rightarrow Q .

(1)(Baer准则)模 QQ 是可注入的当且仅当对于 RR 的每一个左理想 II ,任何 RR -模同态 g:IQg : I \rightarrow Q 都可以扩展为一个 RR -模同态 G:RQG : R \rightarrow Q

(2) If RR is a P.I.D. then QQ is injective if and only if rQ=Q{rQ} = Q for every nonzero rRr \in R . In particular,a Z\mathbb{Z} -module is injective if and only if it is divisible. When RR is a P.I.D.,quotient modules of injective RR -modules are again injective.

(2)如果 RR 是一个P.I.D.,那么 QQ 是可注入的当且仅当对于每一个非零 rRr \in R 成立 rQ=Q{rQ} = Q 。特别地,一个 Z\mathbb{Z} -模是可注入的当且仅当它是可除的。当 RR 是一个P.I.D.时,可注入 RR -模的商模仍然是可注入的。

Proof: If QQ is injective and g:IQg : I \rightarrow Q is an RR -module homomorphism from the nonzero ideal II of RR into QQ ,then gg can be extended to an RR -module homomorphism from RR into QQ by Proposition 34(2) applied to the exact sequence 0IR0 \rightarrow I \rightarrow R ,which proves the “only if” portion of (1). Suppose conversely that every homomorphism g:IQg : I \rightarrow Q can be lifted to a homomorphism G:RQG : R \rightarrow Q . To show that QQ is injective we must show that if 0LM0 \rightarrow L \rightarrow M is exact and f:LQf : L \rightarrow Q is an RR - module homomorphism then there is a lift F:MQF : M \rightarrow Q extending ff . If S\mathcal{S} is the collection (f,L)\left( {{f}^{\prime },{L}^{\prime }}\right) of lifts f:LQ{f}^{\prime } : {L}^{\prime } \rightarrow Q of ff to a submodule L{L}^{\prime } of MM containing LL , then the ordering (f,L)(f,L)\left( {{f}^{\prime },{L}^{\prime }}\right) \leq \left( {{f}^{\prime \prime },{L}^{\prime \prime }}\right) if LL{L}^{\prime } \subseteq {L}^{\prime \prime } and f=f{f}^{\prime \prime } = {f}^{\prime } on L{L}^{\prime } partially orders S\mathcal{S} . Since S\mathcal{S} \neq \varnothing ,by Zorn’s Lemma there is a maximal element (F,M)\left( {F,{M}^{\prime }}\right) in S\mathcal{S} . The map F:MQF : {M}^{\prime } \rightarrow Q is a lift of ff and it suffices to show that M=M{M}^{\prime } = M . Suppose that there is some element mMm \in M not contained in M{M}^{\prime } and let I={rRrmM}I = \left\{ {r \in R \mid {rm} \in {M}^{\prime }}\right\} . It is easy to check that II is a left ideal in RR ,and the map g:IQg : I \rightarrow Q defined by g(x)=F(xm)g\left( x\right) = F\left( {xm}\right) is an RR -module homomorphism from II to QQ . By hypothesis,there is a lift G:RQG : R \rightarrow Q of gg . Consider the submodule M+Rm{M}^{\prime } + {Rm} of MM ,and define the map F:M+RmQ{F}^{\prime } : {M}^{\prime } + {Rm} \rightarrow Q by F(m+rm)=F(m)+G(r){F}^{\prime }\left( {{m}^{\prime } + {rm}}\right) = F\left( {m}^{\prime }\right) + G\left( r\right) . If m1+r1m=m2+r2m{m}_{1} + {r}_{1}m = {m}_{2} + {r}_{2}m then (r1r2)m=m2m1\left( {{r}_{1} - {r}_{2}}\right) m = {m}_{2} - {m}_{1} shows that r1r2I{r}_{1} - {r}_{2} \in I ,so that

证明:如果 QQ 是单射且 g:IQg : I \rightarrow Q 是从 RR 的非零理想 IIQQRR -模同态,那么根据命题34(2)应用于精确序列 0IR0 \rightarrow I \rightarrow Rgg 可以扩展为从 RRQQRR -模同态,这证明了(1)的“仅当”部分。假设反过来,每个同态 g:IQg : I \rightarrow Q 都可以提升为同态 G:RQG : R \rightarrow Q 。为了证明 QQ 是单射,我们必须证明如果 0LM0 \rightarrow L \rightarrow M 是精确的且 f:LQf : L \rightarrow Q 是一个 RR -模同态,那么存在一个提升 F:MQF : M \rightarrow Q 来扩展 ff 。如果 S\mathcal{S} 是提升 f:LQ{f}^{\prime } : {L}^{\prime } \rightarrow Q 的集合 (f,L)\left( {{f}^{\prime },{L}^{\prime }}\right) 到包含 LLMM 的子模块 L{L}^{\prime } ,那么在 L{L}^{\prime } 上的排序 (f,L)(f,L)\left( {{f}^{\prime },{L}^{\prime }}\right) \leq \left( {{f}^{\prime \prime },{L}^{\prime \prime }}\right) 如果 LL{L}^{\prime } \subseteq {L}^{\prime \prime }f=f{f}^{\prime \prime } = {f}^{\prime } 部分排序 S\mathcal{S} 。由于 S\mathcal{S} \neq \varnothing ,根据佐恩引理,在 S\mathcal{S} 中存在一个极大元素 (F,M)\left( {F,{M}^{\prime }}\right) 。映射 F:MQF : {M}^{\prime } \rightarrow Qff 的提升,足够证明 M=M{M}^{\prime } = M 。假设存在某个元素 mMm \in M 不包含在 M{M}^{\prime } 中,并令 I={rRrmM}I = \left\{ {r \in R \mid {rm} \in {M}^{\prime }}\right\} 。容易验证 IIRR 中的左理想,且由 g(x)=F(xm)g\left( x\right) = F\left( {xm}\right) 定义的映射 g:IQg : I \rightarrow Q 是从 IIQQRR -模同态。根据假设,存在 gg 的提升 G:RQG : R \rightarrow Q 。考虑 MM 的子模块 M+Rm{M}^{\prime } + {Rm} ,并通过 F(m+rm)=F(m)+G(r){F}^{\prime }\left( {{m}^{\prime } + {rm}}\right) = F\left( {m}^{\prime }\right) + G\left( r\right) 定义映射 F:M+RmQ{F}^{\prime } : {M}^{\prime } + {Rm} \rightarrow Q 。如果 m1+r1m=m2+r2m{m}_{1} + {r}_{1}m = {m}_{2} + {r}_{2}m ,那么 (r1r2)m=m2m1\left( {{r}_{1} - {r}_{2}}\right) m = {m}_{2} - {m}_{1} 显示 r1r2I{r}_{1} - {r}_{2} \in I ,因此使得

G(r1r2)=g(r1r2)=F((r1r2)m)=F(m2m1),G\left( {{r}_{1} - {r}_{2}}\right) = g\left( {{r}_{1} - {r}_{2}}\right) = F\left( {\left( {{r}_{1} - {r}_{2}}\right) m}\right) = F\left( {{m}_{2} - {m}_{1}}\right) ,

and so F(m1)+G(r1)=F(m2)+G(r2)F\left( {m}_{1}\right) + G\left( {r}_{1}\right) = F\left( {m}_{2}\right) + G\left( {r}_{2}\right) . Hence F{F}^{\prime } is well defined and it is then immediate that F{F}^{\prime } is an RR -module homomorphism extending ff to M+Rm{M}^{\prime } + {Rm} . This contradicts the maximality of M{M}^{\prime } ,so that M=M{M}^{\prime } = M ,which completes the proof of (1).

因此 F(m1)+G(r1)=F(m2)+G(r2)F\left( {m}_{1}\right) + G\left( {r}_{1}\right) = F\left( {m}_{2}\right) + G\left( {r}_{2}\right) 。所以 F{F}^{\prime } 是良好定义的,并且立即可以得出 F{F}^{\prime } 是一个 RR -模同态,将 ff 扩展到 M+Rm{M}^{\prime } + {Rm} 。这与 M{M}^{\prime } 的极大性相矛盾,因此 M=M{M}^{\prime } = M ,这完成了 (1) 的证明。

To prove (2),suppose RR is a P.I.D. Any nonzero ideal II of RR is of the form I=(r)I = \left( r\right) for some nonzero element rr of RR . An RR -module homomorphism f:IQf : I \rightarrow Q is completely determined by the image f(r)=qf\left( r\right) = q in QQ . This homomorphism can be extended to a homomorphism F:RQF : R \rightarrow Q if and only if there is an element q{q}^{\prime } in QQ with F(1)=qF\left( 1\right) = {q}^{\prime } satisfying q=f(r)=F(r)=rqq = f\left( r\right) = F\left( r\right) = r{q}^{\prime } . It follows that Baer’s criterion for QQ is satisfied if and only if rQ=Q{rQ} = Q ,which proves the first two statements in (2). The final statement follows since a quotient of a module QQ with rQ=Q{rQ} = Q for all r0r \neq 0 in RR has the same property.

为了证明 (2),假设 RR 是一个 P.I.D.。RR 的任何非零理想 II 都可以表示为 I=(r)I = \left( r\right) 的形式,其中 rrRR 中的某个非零元素。一个 RR -模同态 f:IQf : I \rightarrow Q 完全由在 QQ 中的像 f(r)=qf\left( r\right) = q 确定。当且仅当 QQ 中存在一个元素 q{q}^{\prime } 满足 F(1)=qF\left( 1\right) = {q}^{\prime } 使得 q=f(r)=F(r)=rqq = f\left( r\right) = F\left( r\right) = r{q}^{\prime } 时,这个同态可以扩展为一个同态 F:RQF : R \rightarrow Q 。因此,如果且仅当 rQ=Q{rQ} = Q 时,QQ 满足 Baer 准则,这证明了 (2) 中的前两个陈述。由于一个模 QQ 的商,对于 RR 中所有 r0r \neq 0 都具有 rQ=Q{rQ} = Q 的性质,最后一个陈述随之成立。

Examples

示例

(1) Since Z\mathbb{Z} is not divisible, Z\mathbb{Z} is not an injective Z\mathbb{Z} -module. This also follows from the fact that the exact sequence 0Z2ZZ/2Z00 \rightarrow \mathbb{Z}\overset{2}{ \rightarrow }\mathbb{Z} \rightarrow \mathbb{Z}/2\mathbb{Z} \rightarrow 0 corresponding to multiplication by 2 does not split.

(1) 由于 Z\mathbb{Z} 不可除,Z\mathbb{Z} 不是一个注入的 Z\mathbb{Z} -模。这也从对应的乘以 2 的精确序列 0Z2ZZ/2Z00 \rightarrow \mathbb{Z}\overset{2}{ \rightarrow }\mathbb{Z} \rightarrow \mathbb{Z}/2\mathbb{Z} \rightarrow 0 不分裂的事实得出。

(2) The rational numbers Q\mathbb{Q} is an injective Z\mathbb{Z} -module.

(2) 有理数 Q\mathbb{Q} 是一个注入的 Z\mathbb{Z} -模。

(3) The quotient Q/Z\mathbb{Q}/\mathbb{Z} of the injective Z\mathbb{Z} -module Q\mathbb{Q} is an injective Z\mathbb{Z} -module.

(3) 注入 Z\mathbb{Z} -模 Q\mathbb{Q} 的商 Q/Z\mathbb{Q}/\mathbb{Z} 是一个注入的 Z\mathbb{Z} -模。

(4) It is immediate that a direct sum of divisible Z\mathbb{Z} -modules is again divisible,hence a direct sum of injective Z\mathbb{Z} -modules is again injective. For example, QQ/Z\mathbb{Q} \oplus \mathbb{Q}/\mathbb{Z} is an injective Z\mathbb{Z} -module. (See also Exercise 4).

(4) 显然,可除 Z\mathbb{Z} -模的直接和仍然是可除的,因此可除 Z\mathbb{Z} -模的直接和仍然是可注的。例如,QQ/Z\mathbb{Q} \oplus \mathbb{Q}/\mathbb{Z} 是一个可注 Z\mathbb{Z} -模。(也见练习4)。

(5) We shall see in Chapter 12 that no nonzero finitely generated Z\mathbb{Z} -module is injective.

(5) 我们将在第12章看到,没有非零有限生成的 Z\mathbb{Z} -模是可注的。

(6) Suppose that the ring RR is an integral domain. An RR -module AA is said to be a divisible RR -module if rA=A{rA} = A for every nonzero rRr \in R . The proof of Proposition 36 shows that in this case an injective RR -module is divisible.

(6) 假设环 RR 是一个整环。一个 RR -模 AA 被称为可除 RR -模,如果对于每一个非零 rRr \in R 成立 rA=A{rA} = A。命题36的证明表明,在这种情况下,一个可注 RR -模是可除的。

(7) We shall see in Section 11.1 that if R=FR = F is a field then every FF -module is injective.

(7) 我们将在11.1节看到,如果 R=FR = F 是一个域,那么每一个 FF -模都是可注的。

(8) We shall see in Part VI that if FF is any field and nZ+n \in {\mathbb{Z}}^{ + } then the ring R=Mn(F)R = {M}_{n}\left( F\right) of all n×nn \times n matrices with entries from FF has the property that every RR -module is injective (and also projective). We shall also see that if GG is a finite group of order nn and n0n \neq 0 in the field FF then the group ring FG{FG} also has the property that every module is injective (and also projective).

(8) 我们将在第六部分看到,如果 FF 是任意域且 nZ+n \in {\mathbb{Z}}^{ + } ,那么所有 n×nn \times n 矩阵的环 R=Mn(F)R = {M}_{n}\left( F\right) ,其元素来自 FF ,具有每个 RR -模都是可注(并且也是可投射)的性质。我们还将看到,如果 GG 是一个有限阶为 nn 的群,并且 n0n \neq 0 在域 FF 中,那么群环 FG{FG} 也具有每个模都是可注(并且也是可投射)的性质。

Corollary 37. Every Z\mathbb{Z} -module is a submodule of an injective Z\mathbb{Z} -module.

推论37。每一个 Z\mathbb{Z} -模都是某个可注 Z\mathbb{Z} -模的子模。

Proof: Let MM be a Z\mathbb{Z} -module and let AA be any set of Z\mathbb{Z} -module generators of MM . Let F=F(A)\mathcal{F} = F\left( A\right) be the free Z\mathbb{Z} -module on the set AA . Then by Theorem 6 there is a surjective Z\mathbb{Z} -module homomorphism from F\mathcal{F} to MM and if K\mathcal{K} denotes the kernel of this homomorphism then K\mathcal{K} is a Z\mathbb{Z} -submodule of F\mathcal{F} and we can identify M=F/KM = \mathcal{F}/\mathcal{K} . Let Q\mathcal{Q} be the free Q\mathbb{Q} -module on the set AA . Then Q\mathcal{Q} is a direct sum of a number of copies of Q\mathbb{Q} , so is a divisible,hence (by Proposition 36) injective, Z\mathbb{Z} -module containing F\mathcal{F} . Then K\mathcal{K} is also a Z\mathbb{Z} -submodule of Q\mathcal{Q} ,so the quotient Q/K\mathcal{Q}/\mathcal{K} is injective,again by Proposition 36. Since M=F/KQ/KM = \mathcal{F}/\mathcal{K} \subseteq \mathcal{Q}/\mathcal{K} ,it follows that MM is contained in an injective Z\mathbb{Z} -module.

证明:设 MM 是一个 Z\mathbb{Z} -模,设 AAMM 的一组任意 Z\mathbb{Z} -模生成元。设 F=F(A)\mathcal{F} = F\left( A\right) 是在集合 AA 上的自由 Z\mathbb{Z} -模。根据定理6,存在从 F\mathcal{F}MM 的满射 Z\mathbb{Z} -模同态,如果 K\mathcal{K} 表示这个同态的核,那么 K\mathcal{K}F\mathcal{F} 的一个 Z\mathbb{Z} -子模,我们可以识别 M=F/KM = \mathcal{F}/\mathcal{K}。设 Q\mathcal{Q} 是在集合 AA 上的自由 Q\mathbb{Q} -模。那么 Q\mathcal{Q}Q\mathbb{Q} 的若干个副本的直接和,因此是可除的(由命题36),所以是包含 F\mathcal{F} 的内射 Z\mathbb{Z} -模。因此 K\mathcal{K} 也是 Q\mathcal{Q} 的一个 Z\mathbb{Z} -子模,所以商 Q/K\mathcal{Q}/\mathcal{K} 是内射的,再次由命题36得出。由于 M=F/KQ/KM = \mathcal{F}/\mathcal{K} \subseteq \mathcal{Q}/\mathcal{K} ,因此 MM 包含在一个内射的 Z\mathbb{Z} -模中。

Corollary 37 can be used to prove the following more general version valid for arbitrary RR -modules. This theorem is the injective analogue of the results in Theorem 6 and Corollary 31 showing that every RR -module is a quotient of a projective RR -module.

推论37可以用来证明以下更一般的版本,对于任意的 RR -模都是有效的。这个定理是定理6和推论31的内射类似物,表明每个 RR -模都是某个投射 RR -模的商。

Theorem 38. Let RR be a ring with 1 and let MM be an RR -module. Then MM is contained in an injective RR -module.

定理38。设 RR 是一个带有单位元的环,设 MM 是一个 RR -模。那么 MM 包含在一个内射的 RR -模中。

Proof: A proof is outlined in Exercises 15 to 17.

证明:证明大纲在练习15到17中概述。

It is possible to prove a sharper result than Theorem 38, namely that there is a minimal injective RR -module HH containing MM in the sense that any injective map of MM into an injective RR -module QQ factors through HH . More precisely,if MQM \subseteq Q for an injective RR -module QQ then there is an injection ι:HQ\iota : H \hookrightarrow Q that restricts to the identity map on MM ; using ι\iota to identify HH as a subset of QQ we have MHQM \subseteq H \subseteq Q . (cf. Theorem 57.13 in Representation Theory of Finite Groups and Associative Algebras by C. Curtis and I. Reiner,John Wiley &Sons,1966). This module HH is called the injective hull or injective envelope of MM . The universal property of the injective hull of MM with respect to inclusions of MM into injective RR -modules should be compared to the universal property with respect to homomorphisms of MM of the free module F(A)F\left( A\right) on a set of generators AA for MM in Theorem 6. For example,the injective hull of Z\mathbb{Z} is Q\mathbb{Q} ,and the injective hull of any field is itself (cf. the exercises).

可以证明一个比定理38更强的结果,即存在一个包含 RR -模 HH 的最小单射模 MM ,在 MM 到任何 RR -单射模 QQ 的单射映射的意义上,它可以通过 HH 实现。更准确地说,如果 MQM \subseteq Q 对于一个 RR -单射模 QQ ,那么存在一个单射 ι:HQ\iota : H \hookrightarrow Q ,它限制在 MM 上是恒等映射;使用 ι\iota 识别 HH 作为 QQ 的子集,我们得到 MHQM \subseteq H \subseteq Q。(参见C. Curtis和I. Reiner的《有限群和结合代数的表示论》中的定理57.13,John Wiley &Sons, 1966)。这个模 HH 被称为 MM 的单射 hull 或单射 envelope。关于 MM 的单射 hull 的普遍性质,与定理6中关于生成元集合 AA 的自由模 F(A)F\left( A\right) 的同态的普遍性质相比,应考虑 MM 到单射 RR -模的包含。例如,Z\mathbb{Z} 的单射 hull 是 Q\mathbb{Q} ,任何域的单射 hull 是其本身(参见练习)。

Flat Modules and DRD{ \otimes }_{R} -

扁平模和 DRD{ \otimes }_{R} -

We now consider the behavior of extensions 0LψMφN00 \rightarrow L\overset{\psi }{ \rightarrow }M\overset{\varphi }{ \rightarrow }N \rightarrow 0 of RR -modules with respect to tensor products.

现在我们考虑 RR -模的扩张 0LψMφN00 \rightarrow L\overset{\psi }{ \rightarrow }M\overset{\varphi }{ \rightarrow }N \rightarrow 0 对张量积的行为。

Suppose that DD is a right RR -module. For any homomorphism f:XYf : X \rightarrow Y of left RR -modules we obtain a homomorphism 1f:DRXDRY1 \otimes f : D{ \otimes }_{R}X \rightarrow D{ \otimes }_{R}Y of abelian groups (Theorem 13). If in addition DD is an(S,R)-bimodule (for example,when S=RS = R is commutative and DD is given the standard(R,R)-bimodule structure as in Section 4), then 1f1 \otimes f is a homomorphism of left SS -modules. Put another way,

假设 DD 是一个右 RR -模。对于任意左 RR -模的同态 f:XYf : X \rightarrow Y,我们可以得到一个阿贝尔群的同态 1f:DRXDRY1 \otimes f : D{ \otimes }_{R}X \rightarrow D{ \otimes }_{R}Y(定理13)。此外,如果 DD 是一个(S,R)-双模(例如,当 S=RS = R 是交换的并且 DD 具有如第4节中给出的标准(R,R)-双模结构时),那么 1f1 \otimes f 是一个左 SS -模的同态。换句话说,

DR_:XDRXD{ \otimes }_{R}\_ : X \rightarrow D{ \otimes }_{R}X

is a covariant functor from the category of left RR -modules to the category of abelian groups (respectively,to the category of left SS -modules when DD is an(S,R)-bimodule), cf. Appendix II. In a similar way,if DD is a left RR -module then _RD\_ { \otimes }_{R}D is a covariant functor from the category of right R-modules\textit{R-modules} to the category of abelian groups (respectively,to the category of right SS -modules when DD is an(R,S)-bimodule). Note that, unlike Hom, the tensor product is covariant in both variables, and we shall therefore concentrate on DRD{ \otimes }_{R} ,leaving as an exercise the minor alterations necessary for _____ RD{ \otimes }_{R}D .

是从左 RR -模的类别到阿贝尔群类别(相应地,当 DD 是一个(S,R)-双模时,到左 SS -模的类别)的协变函子,参见附录II。类似地,如果 DD 是一个左 RR -模,那么 _RD\_ { \otimes }_{R}D 是从右 R-modules\textit{R-modules} 的类别到阿贝尔群类别(相应地,当 DD 是一个(R,S)-双模时,到右 SS -模的类别)的协变函子。注意,与 Hom 不同,张量积在两个变量上都是协变的,因此我们将集中研究 DRD{ \otimes }_{R},将 RD{ \otimes }_{R}D 的必要小改动留作练习。

We have already seen examples where the map 1ψ:DRLDRM1 \otimes \psi : D{ \otimes }_{R}L \rightarrow D{ \otimes }_{R}M induced by an injective map ψ:LM\psi : L \hookrightarrow M is no longer injective (for example the injection ZQ\mathbb{Z} \hookrightarrow \mathbb{Q} of Z\mathbb{Z} -modules induces the zero map from Z/2ZZZ=Z/2Z\mathbb{Z}/2\mathbb{Z}{ \otimes }_{\mathbb{Z}}\mathbb{Z} = \mathbb{Z}/2\mathbb{Z} to Z/2ZZQ=0).  \mathbb{Z}/2\mathbb{Z}{ \otimes }_{\mathbb{Z}}\mathbb{Q} = 0).\; On the other hand,suppose that φ:MN\varphi : M \rightarrow N is a surjective RR -module homomorphism. The tensor product DRND{ \otimes }_{R}N is generated as an abelian group by the simple tensors dnd \otimes n for dDd \in D and nNn \in N . The surjectivity of φ\varphi implies that n=φ(m)n = \varphi \left( m\right) for some mMm \in M ,and then 1φ(dm)=dφ(m)=dn1 \otimes \varphi \left( {d \otimes m}\right) = d \otimes \varphi \left( m\right) = d \otimes n shows that 1φ1 \otimes \varphi is a surjective homomorphism of abelian groups from DRMD{ \otimes }_{R}M to DRND{ \otimes }_{R}N . This proves most of the following theorem.

我们已经看到了一些例子,其中由单射 1ψ:DRLDRM1 \otimes \psi : D{ \otimes }_{R}L \rightarrow D{ \otimes }_{R}M 引导的映射 ψ:LM\psi : L \hookrightarrow M 不再是单射(例如,ZQ\mathbb{Z} \hookrightarrow \mathbb{Q} 的注入 Z\mathbb{Z} -模导致从 Z/2ZZZ=Z/2Z\mathbb{Z}/2\mathbb{Z}{ \otimes }_{\mathbb{Z}}\mathbb{Z} = \mathbb{Z}/2\mathbb{Z}Z/2ZZQ=0).  \mathbb{Z}/2\mathbb{Z}{ \otimes }_{\mathbb{Z}}\mathbb{Q} = 0).\; 的零映射)。另一方面,假设 φ:MN\varphi : M \rightarrow N 是一个满射 RR -模同态。张量积 DRND{ \otimes }_{R}N 作为一个阿贝尔群由简单张量 dnd \otimes n 生成,对于 dDd \in DnNn \in Nφ\varphi 的满射性意味着对于某些 mMm \in M ,存在 n=φ(m)n = \varphi \left( m\right),然后 1φ(dm)=dφ(m)=dn1 \otimes \varphi \left( {d \otimes m}\right) = d \otimes \varphi \left( m\right) = d \otimes n 显示 1φ1 \otimes \varphi 是从 DRMD{ \otimes }_{R}MDRND{ \otimes }_{R}N 的阿贝尔群的满射同态。这证明了以下定理的大部分内容。

Theorem 39. Suppose that DD is a right RR -module and that L,ML,M and NN are left RR -modules. If

定理39。假设 DD 是一个右 RR -模,且 L,ML,MNN 是左 RR -模。如果

0LψMφN0is exact,0 \rightarrow L\overset{\psi }{ \rightarrow }M\overset{\varphi }{ \rightarrow }N \rightarrow 0\text{is exact,}

then the associated sequence of abelian groups

那么,相关的阿贝尔群序列

DRL1ψDRM1φDRN0 is exact. (10.13)D{ \otimes }_{R}L\overset{1 \otimes \psi }{ \rightarrow }D{ \otimes }_{R}M\overset{1 \otimes \varphi }{ \rightarrow }D{ \otimes }_{R}N \rightarrow 0\text{ is exact. } \tag{10.13}

If DD is an(S,R)-bimodule then (13) is an exact sequence of left SS -modules. In particular,if S=RS = R is a commutative ring,then (13) is an exact sequence of RR -modules with respect to the standard RR -module structures. The map 1φ1 \otimes \varphi is not in general injective i.e., the sequence (13) cannot in general be extended to a short exact sequence.

如果 DD 是一个 (S,R)-双边模,那么 (13) 是左 SS -模的精确序列。特别是,如果 S=RS = R 是一个交换环,那么 (13) 是关于标准 RR -模结构的 RR -模的精确序列。映射 1φ1 \otimes \varphi 通常不是单射的,即序列 (13) 通常不能扩展为短精确序列。

The sequence (13) is exact for all right RR -modules DD if and only if

序列 (13) 对于所有右 RR -模 DD 是精确的,当且仅当

LψMφN0 is exact. L\overset{\psi }{ \rightarrow }M\overset{\varphi }{ \rightarrow }N \rightarrow 0\text{ is exact. }

Proof: For the first statement it remains to prove the exactness of (13) at DRMD{ \otimes }_{R}M . Since φψ=0\varphi \circ \psi = 0 ,we have

证明:对于第一个陈述,需要证明 (13) 在 DRMD{ \otimes }_{R}M 处的精确性。由于 φψ=0\varphi \circ \psi = 0 ,我们有

(1φ)(diψ(li))=di(φψ(li))=0\left( {1 \otimes \varphi }\right) \left( {\sum {d}_{i} \otimes \psi \left( {l}_{i}\right) }\right) = \sum {d}_{i} \otimes \left( {\varphi \circ \psi \left( {l}_{i}\right) }\right) = 0

and it follows that image (1ψ)ker(1φ)\left( {1 \otimes \psi }\right) \subseteq \ker \left( {1 \otimes \varphi }\right) . In particular,there is a natural projection π:(DRM)/  image(1ψ)(DRM)/ker(1φ)=DRN.  The  composite\pi : \left( {D{ \otimes }_{R}M}\right) /\;\mathrm{{image}}\left( {1 \otimes \psi }\right) \rightarrow \left( {D{ \otimes }_{R}M}\right) /\ker \left( {1 \otimes \varphi }\right) = D{ \otimes }_{R}N.\;\mathrm{{The}\;{composite}} of the two projection homomorphisms

因此图像 (1ψ)ker(1φ)\left( {1 \otimes \psi }\right) \subseteq \ker \left( {1 \otimes \varphi }\right) 。特别是,存在两个投影同态的自然投影 π:(DRM)/  image(1ψ)(DRM)/ker(1φ)=DRN.  The  composite\pi : \left( {D{ \otimes }_{R}M}\right) /\;\mathrm{{image}}\left( {1 \otimes \psi }\right) \rightarrow \left( {D{ \otimes }_{R}M}\right) /\ker \left( {1 \otimes \varphi }\right) = D{ \otimes }_{R}N.\;\mathrm{{The}\;{composite}}

DRM(DRM)/image(1ψ)πDRND{ \otimes }_{R}M \rightarrow \left( {D{ \otimes }_{R}M}\right) /\operatorname{image}\left( {1 \otimes \psi }\right) \overset{\pi }{ \rightarrow }D{ \otimes }_{R}N

is the quotient of DRMD{ \otimes }_{R}M by ker(1φ)\ker \left( {1 \otimes \varphi }\right) ,so is just the map 1φ1 \otimes \varphi . We shall show that π\pi is an isomorphism,which will show that the kernel of 1φ1 \otimes \varphi is just the kernel of the first projection above,i.e.,image (1ψ)\left( {1 \otimes \psi }\right) ,giving the exactness of (13) at DRMD{ \otimes }_{R}M . To see that π\pi is an isomorphism we define an inverse map. First define π:D×N{\pi }^{\prime } : D \times N \rightarrow (DRM)/image(1ψ)\left( {D{ \otimes }_{R}M}\right) /\operatorname{image}\left( {1 \otimes \psi }\right) by π((d,n))=dm{\pi }^{\prime }\left( \left( {d,n}\right) \right) = d \otimes m for any mMm \in M with φ(m)=n.\varphi \left( m\right) = n. Note that this is well defined: any other element mM{m}^{\prime } \in M mapping to nn differs from mm by an element in kerφ=imageψ\ker \varphi = \operatorname{image}\psi ,i.e., m=m+ψ(l){m}^{\prime } = m + \psi \left( l\right) for some lLl \in L ,and dψ(l)image(1ψ)d \otimes \psi \left( l\right) \in \operatorname{image}\left( {1 \otimes \psi }\right) . It is easy to check that π{\pi }^{\prime } is a balanced map,so induces a homomorphism π~:D×N(DRM)/\widetilde{\pi } : D \times N \rightarrow \left( {D{ \otimes }_{R}M}\right) / image (1ψ)\left( {1 \otimes \psi }\right) with π~(dn)=dm.\widetilde{\pi }\left( {d \otimes n}\right) = d \otimes m. Then π~π(dm)=π~(dφ(m))=dm\widetilde{\pi } \circ \pi \left( {d \otimes m}\right) = \widetilde{\pi }\left( {d \otimes \varphi \left( m\right) }\right) = d \otimes m shows that π~π=1\widetilde{\pi } \circ \pi = 1 . Similarly, ππ~=1\pi \circ \widetilde{\pi } = 1 ,so that π\pi and π~\widetilde{\pi } are inverse isomorphisms,completing the proof that (13) is exact. Note also that the injectivity of ψ\psi was not required for the proof.

DRMD{ \otimes }_{R}M 除以 ker(1φ)\ker \left( {1 \otimes \varphi }\right) 的商,因此仅仅是映射 1φ1 \otimes \varphi 。我们将证明 π\pi 是同构,这将表明 1φ1 \otimes \varphi 的核仅仅是上述第一个投影的核,即图像 (1ψ)\left( {1 \otimes \psi }\right) ,从而证明了(13)在 DRMD{ \otimes }_{R}M 处的精确性。为了看出 π\pi 是同构,我们定义一个逆映射。首先定义 π:D×N{\pi }^{\prime } : D \times N \rightarrow (DRM)/image(1ψ)\left( {D{ \otimes }_{R}M}\right) /\operatorname{image}\left( {1 \otimes \psi }\right) 通过 π((d,n))=dm{\pi }^{\prime }\left( \left( {d,n}\right) \right) = d \otimes m 对于任何满足 φ(m)=n.\varphi \left( m\right) = n.mMm \in M 。注意这是良好定义的:映射到 nn 的任何其他元素 mM{m}^{\prime } \in M 都与 mm 相差一个属于 kerφ=imageψ\ker \varphi = \operatorname{image}\psi 的元素,即存在某个 lLl \in L 使得 m=m+ψ(l){m}^{\prime } = m + \psi \left( l\right) ,并且 dψ(l)image(1ψ)d \otimes \psi \left( l\right) \in \operatorname{image}\left( {1 \otimes \psi }\right) 。容易验证 π{\pi }^{\prime } 是一个平衡映射,因此诱导出一个同态 π~:D×N(DRM)/\widetilde{\pi } : D \times N \rightarrow \left( {D{ \otimes }_{R}M}\right) / 图像 (1ψ)\left( {1 \otimes \psi }\right) 并满足 π~(dn)=dm.\widetilde{\pi }\left( {d \otimes n}\right) = d \otimes m. 。然后 π~π(dm)=π~(dφ(m))=dm\widetilde{\pi } \circ \pi \left( {d \otimes m}\right) = \widetilde{\pi }\left( {d \otimes \varphi \left( m\right) }\right) = d \otimes m 显示 π~π=1\widetilde{\pi } \circ \pi = 1 。类似地, ππ~=1\pi \circ \widetilde{\pi } = 1 ,因此 π\piπ~\widetilde{\pi } 是互为逆的同构,完成了(13)是精确的证明。还应注意,证明中并未要求 ψ\psi 的单射性。

Finally,suppose (13) is exact for every right RR -module DD . In general, RRXXR{ \otimes }_{R}X \cong X for any left RR -module XX (Example 1 following Corollary 9). Taking D=RD = R the exactness of the sequence LψMφN0L\overset{\psi }{ \rightarrow }M\overset{\varphi }{ \rightarrow }N \rightarrow 0 follows.

最后,假设对于每个右 RR -模 DD ,(13)都是精确的。一般来说, RRXXR{ \otimes }_{R}X \cong X 对于任何左 RR -模 XX (例1跟随推论9)。取 D=RD = R 序列的精确性随之而来 LψMφN0L\overset{\psi }{ \rightarrow }M\overset{\varphi }{ \rightarrow }N \rightarrow 0

By Theorem 39, the sequence

根据定理39,序列

0DRL1ψDRM1φDRN00 \rightarrow D{ \otimes }_{R}L\overset{1 \otimes \psi }{ \rightarrow }D{ \otimes }_{R}M\overset{1 \otimes \varphi }{ \rightarrow }D{ \otimes }_{R}N \rightarrow 0

is not in general exact since 1ψ1 \otimes \psi need not be injective. If 0LψMφN00 \rightarrow L\overset{\psi }{ \rightarrow }M\overset{\varphi }{ \rightarrow }N \rightarrow 0 is a split short exact sequence, however, then since tensor products commute with direct sums by Theorem 17, it follows that

通常来说并不精确,因为 1ψ1 \otimes \psi 不一定是单射的。然而,如果 0LψMφN00 \rightarrow L\overset{\psi }{ \rightarrow }M\overset{\varphi }{ \rightarrow }N \rightarrow 0 是一个分裂的短正合序列,由于定理17,张量积与直和可交换,因此可以得出

0DRL1ψDRM1φDRN00 \rightarrow D{ \otimes }_{R}L\overset{1 \otimes \psi }{ \rightarrow }D{ \otimes }_{R}M\overset{1 \otimes \varphi }{ \rightarrow }D{ \otimes }_{R}N \rightarrow 0

is also a split short exact sequence.

也是一个分裂的短正合序列。

The following result relating to modules DD having the property that (13) can always be extended to a short exact sequence is immediate from Theorem 39:

下面这个关于具有性质(13)总能扩展为短正合序列的模 DD 的结果直接来源于定理39:

Proposition 40. Let AA be a right RR -module. Then the following are equivalent:

命题40。设 AA 是一个右 RR -模。那么以下条件是等价的:

(1) For any left RR -modules L,ML,M ,and NN ,if

(1)对于任何左 RR -模 L,ML,MNN,如果

0LψMφN00 \rightarrow L\overset{\psi }{ \rightarrow }M\overset{\varphi }{ \rightarrow }N \rightarrow 0

is a short exact sequence, then

是一个短正合序列,那么

0ARL1ψARM1φARN00 \rightarrow A{ \otimes }_{R}L\overset{1 \otimes \psi }{ \rightarrow }A{ \otimes }_{R}M\overset{1 \otimes \varphi }{ \rightarrow }A{ \otimes }_{R}N \rightarrow 0

is also a short exact sequence.

也是一个短正合序列。

(2) For any left RR -modules LL and MM ,if 0LψM0 \rightarrow L\overset{\psi }{ \rightarrow }M is an exact sequence of left RR -modules (i.e., ψ:LM\psi : L \rightarrow M is injective) then 0ARL1ψARM0 \rightarrow A{ \otimes }_{R}L\overset{1 \otimes \psi }{ \rightarrow }A{ \otimes }_{R}M is an exact sequence of abelian groups (i.e., 1ψ:ARLARM1 \otimes \psi : A{ \otimes }_{R}L \rightarrow A{ \otimes }_{R}M is injective).

(2)对于任何左 RR -模 LLMM,如果 0LψM0 \rightarrow L\overset{\psi }{ \rightarrow }M 是左 RR -模的精确序列(即 ψ:LM\psi : L \rightarrow M 是单射的),那么 0ARL1ψARM0 \rightarrow A{ \otimes }_{R}L\overset{1 \otimes \psi }{ \rightarrow }A{ \otimes }_{R}M 是阿贝尔群的精确序列(即 1ψ:ARLARM1 \otimes \psi : A{ \otimes }_{R}L \rightarrow A{ \otimes }_{R}M 是单射的)。

Definition. A right RR -module AA is called flat if it satisfies either of the two equivalent conditions of Proposition 40.

定义。一个右 RR -模 AA 如果满足命题40中的两个等价条件之一,则被称为平坦模。

For a fixed right RR -module DD ,the first part of Theorem 39 is referred to by saying that the functor DRD{ \otimes }_{R} is right exact.

对于一个固定的右 RR -模 DD,定理39的第一部分指的是说函子 DRD{ \otimes }_{R} 是右正合的。

Corollary 41. If DD is a right RR -module,then the functor DRD{ \otimes }_{R} _____from the category of left RR -modules to the category of abelian groups is right exact. If DD is an(S,R)- bimodule (for example when S=RS = R is commutative and DD is given the standard RR -module structure),then DRD{ \otimes }_{R} _____is a right exact functor from the category of left RR -modules to the category of left SS -modules. The functor is exact if and only if DD is a flat RR -module.

推论 41. 如果 DD 是一个右 RR -模,那么从左 RR -模范畴到阿贝尔群范畴的函子 DRD{ \otimes }_{R} _____ 是右正合的。如果 DD 是一个 (S,R) 双模(例如当 S=RS = R 是交换的并且 DD 具有标准的 RR -模结构时),那么 DRD{ \otimes }_{R} _____ 是从左 RR -模范畴到左 SS -模范畴的右正合函子。当且仅当 DD 是一个平坦 RR -模时,该函子是正合的。

We have already seen some flat modules:

我们已经看到了一些平坦模:

Corollary 42. Free modules are flat; more generally, projective modules are flat.

推论 42. 自由模是平坦的;更一般地,投射模也是平坦的。

Proof: To show that the free RR -module FF is flat it suffices to show that for any injective map ψ:LM\psi : L \rightarrow M of RR -modules LL and MM the induced map 1ψ:FRL1 \otimes \psi : F{ \otimes }_{R}L \rightarrow FRMF{ \otimes }_{R}M is also injective. Suppose first that FRnF \cong {R}^{n} is a finitely generated free RR - module. In this case FRL=RnRLLnF{ \otimes }_{R}L = {R}^{n}{ \otimes }_{R}L \cong {L}^{n} since RRLLR{ \otimes }_{R}L \cong L and tensor products commute with direct sums. Similarly FRMMnF{ \otimes }_{R}M \cong {M}^{n} and under these isomorphisms the map 1ψ:FRLFRM1 \otimes \psi : F{ \otimes }_{R}L \rightarrow F{ \otimes }_{R}M is just the natural map of Ln{L}^{n} to Mn{M}^{n} induced by the inclusion ψ\psi in each component. In particular, 1ψ1 \otimes \psi is injective and it follows that any finitely generated free module is flat. Suppose now that FF is an arbitrary free module and that the element filiFRL\sum {f}_{i} \otimes {l}_{i} \in F{ \otimes }_{R}L is mapped to 0 by 1ψ1 \otimes \psi . This means that the element (fi,ψ(li))\sum \left( {{f}_{i},\psi \left( {l}_{i}\right) }\right) can be written as a sum of generators as in equation (6) in the previous section in the free group on F×MF \times M . Since this sum of elements is finite, all of the first coordinates of the resulting equation lie in some finitely generated free submodule F{F}^{\prime } of FF . Then this equation implies that filiFRL\sum {f}_{i} \otimes {l}_{i} \in {F}^{\prime }{ \otimes }_{R}L is mapped to 0 in FRM{F}^{\prime }{ \otimes }_{R}M . Since F{F}^{\prime } is a finitely generated free module,the injectivity we proved above shows that fili\sum {f}_{i} \otimes {l}_{i} is 0 in FRL{F}^{\prime }{ \otimes }_{R}L and so also in FRLF{ \otimes }_{R}L . It follows that 1ψ1 \otimes \psi is injective and hence that FF is flat.

证明:要证明自由的 RR -模 FF 是平坦的,只需证明对于任何 RR -模 LLMM 之间的单射映射 ψ:LM\psi : L \rightarrow M,所诱导的映射 1ψ:FRL1 \otimes \psi : F{ \otimes }_{R}L \rightarrow FRMF{ \otimes }_{R}M 也是单射的。首先假设 FRnF \cong {R}^{n} 是一个有限生成的自由 RR -模。在这种情况下 FRL=RnRLLnF{ \otimes }_{R}L = {R}^{n}{ \otimes }_{R}L \cong {L}^{n},由于 RRLLR{ \otimes }_{R}L \cong L 且张量积与直和交换。类似地 FRMMnF{ \otimes }_{R}M \cong {M}^{n},在这些同构下,映射 1ψ:FRLFRM1 \otimes \psi : F{ \otimes }_{R}L \rightarrow F{ \otimes }_{R}M 只是从 Ln{L}^{n}Mn{M}^{n} 的自然映射,由每个分量中的包含 ψ\psi 诱导。特别是,1ψ1 \otimes \psi 是单射的,因此任何有限生成的自由模都是平坦的。现在假设 FF 是一个任意的自由模,且元素 filiFRL\sum {f}_{i} \otimes {l}_{i} \in F{ \otimes }_{R}L 通过 1ψ1 \otimes \psi 映射到 0。这意味着元素 (fi,ψ(li))\sum \left( {{f}_{i},\psi \left( {l}_{i}\right) }\right) 可以写成如上一节方程(6)中的生成元的和,在 F×MF \times M 的自由群上。由于这个元素的和是有限的,所得方程的所有第一个坐标都位于 FF 的某个有限生成的自由子模 F{F}^{\prime } 中。那么这个方程意味着 filiFRL\sum {f}_{i} \otimes {l}_{i} \in {F}^{\prime }{ \otimes }_{R}LFRM{F}^{\prime }{ \otimes }_{R}M 中映射到 0。由于 F{F}^{\prime } 是一个有限生成的自由模,我们上面证明的单射性表明 fili\sum {f}_{i} \otimes {l}_{i}FRL{F}^{\prime }{ \otimes }_{R}L 中是 0,因此在 FRLF{ \otimes }_{R}L 中也是 0。因此 1ψ1 \otimes \psi 是单射的,从而 FF 是平坦的。

Suppose now that PP is a projective module. Then PP is a direct summand of a free module FF (Proposition 30),say F=PPF = P \oplus {P}^{\prime } . If ψ:LM\psi : L \rightarrow M is injective then 1ψ:FRLFRM1 \otimes \psi : F{ \otimes }_{R}L \rightarrow F{ \otimes }_{R}M is also injective by what we have already shown. Since F=PPF = P \oplus {P}^{\prime } and tensor products commute with direct sums,this shows that

假设现在 PP 是一个射影模。那么 PP 是自由模 FF 的直和项(命题30),比如说 F=PPF = P \oplus {P}^{\prime }。如果 ψ:LM\psi : L \rightarrow M 是内射的,那么根据我们已经证明的,1ψ:FRLFRM1 \otimes \psi : F{ \otimes }_{R}L \rightarrow F{ \otimes }_{R}M 也是内射的。由于 F=PPF = P \oplus {P}^{\prime } 和张量积与直和交换,这表明

1ψ:(PRL)(PRL)(PRM)(PRM)1 \otimes \psi : \left( {P{ \otimes }_{R}L}\right) \oplus \left( {{P}^{\prime }{ \otimes }_{R}L}\right) \rightarrow \left( {P{ \otimes }_{R}M}\right) \oplus \left( {{P}^{\prime }{ \otimes }_{R}M}\right)

is injective. Hence 1ψ:PRLPRM1 \otimes \psi : P{ \otimes }_{R}L \rightarrow P{ \otimes }_{R}M is injective,proving that PP is flat.

是内射的。因此 1ψ:PRLPRM1 \otimes \psi : P{ \otimes }_{R}L \rightarrow P{ \otimes }_{R}M 是内射的,证明了 PP 是平坦的。

Examples

示例

(1) Since Z\mathbb{Z} is a projective Z\mathbb{Z} -module it is flat. The example before Theorem 39 shows that Z/2Z\mathbb{Z}/2\mathbb{Z} not a flat Z\mathbb{Z} -module.

(1) 由于 Z\mathbb{Z} 是一个射影 Z\mathbb{Z} -模,它是平坦的。定理39之前的例子表明 Z/2Z\mathbb{Z}/2\mathbb{Z} 不是平坦的 Z\mathbb{Z} -模。

(2) The Z\mathbb{Z} -module Q\mathbb{Q} is a flat Z\mathbb{Z} -module,as follows. Suppose ψ:LM\psi : L \rightarrow M is an injective map of Z\mathbb{Z} -modules. Every element of QZL\mathbb{Q}{ \otimes }_{\mathbb{Z}}L can be written in the form (1/d)l\left( {1/d}\right) \otimes l for some nonzero integer dd and some lLl \in L (Exercise 7 in Section 4). If (1/d)l\left( {1/d}\right) \otimes l is in the kernel of 1ψ1 \otimes \psi then (1/d)ψ(l)\left( {1/d}\right) \otimes \psi \left( l\right) is0in QZM\mathbb{Q}{ \otimes }_{\mathbb{Z}}M . By Exercise 8 in Section 4 this means cψ(l)=0{c\psi }\left( l\right) = 0 in MM for some nonzero integer cc . Then ψ(cl)=0\psi \left( {c \cdot l}\right) = 0 ,and the injectivity of ψ\psi implies cl=0c \cdot l = 0 in LL . But this implies that (1/d)l=(1/cd)(cl)=0\left( {1/d}\right) \otimes l = \left( {1/{cd}}\right) \otimes \left( {c \cdot l}\right) = 0 in LL , which shows that 1ψ1 \otimes \psi is injective.

(2) Z\mathbb{Z} -模 Q\mathbb{Q} 是一个平坦 Z\mathbb{Z} -模,如下所示。假设 ψ:LM\psi : L \rightarrow M 是一个 Z\mathbb{Z} -模的内射映射。QZL\mathbb{Q}{ \otimes }_{\mathbb{Z}}L 的每个元素都可以写成 (1/d)l\left( {1/d}\right) \otimes l 的形式,对于某些非零整数 dd 和某些 lLl \in L(第4节的练习7)。如果 (1/d)l\left( {1/d}\right) \otimes l1ψ1 \otimes \psi 的核中,那么 (1/d)ψ(l)\left( {1/d}\right) \otimes \psi \left( l\right)QZM\mathbb{Q}{ \otimes }_{\mathbb{Z}}M 中为0。根据第4节的练习8,这意味着 cψ(l)=0{c\psi }\left( l\right) = 0MM 中对于某些非零整数 cc。那么 ψ(cl)=0\psi \left( {c \cdot l}\right) = 0,并且 ψ\psi 的内射性意味着 cl=0c \cdot l = 0LL 中。但这意味着 (1/d)l=(1/cd)(cl)=0\left( {1/d}\right) \otimes l = \left( {1/{cd}}\right) \otimes \left( {c \cdot l}\right) = 0LL 中,这表明 1ψ1 \otimes \psi 是内射的。

(3) The Z\mathbb{Z} -module Q/Z\mathbb{Q}/\mathbb{Z} is injective (by Proposition 36),but is not flat: the injective map ψ(z)=2z\psi \left( z\right) = {2z} from Z\mathbb{Z} to Z\mathbb{Z} does not remain injective after tensoring with Q/Z\mathbb{Q}/\mathbb{Z} (1ψ:Q/ZZZQ/ZZ(1 \otimes \psi : \mathbb{Q}/\mathbb{Z}{ \otimes }_{\mathbb{Z}}\mathbb{Z} \rightarrow \mathbb{Q}/\mathbb{Z} \otimes \mathbb{Z} has the nonzero element (12+Z)1\left( {\frac{1}{2} + \mathbb{Z}}\right) \otimes 1 in its kernel - identifying Q/Z=Q/ZZZ\mathbb{Q}/\mathbb{Z} = \mathbb{Q}/\mathbb{Z}{ \otimes }_{\mathbb{Z}}\mathbb{Z} this is the statement that multiplication by 2 has the element 1/21/2 in its kernel).

(3) Z\mathbb{Z} -模 Q/Z\mathbb{Q}/\mathbb{Z} 是可注入的(由命题36得出),但不是平坦的:从 Z\mathbb{Z}Z\mathbb{Z} 的可注入映射 ψ(z)=2z\psi \left( z\right) = {2z} 在与 Q/Z\mathbb{Q}/\mathbb{Z} 张量积后不再保持可注入性 (1ψ:Q/ZZZQ/ZZ(1 \otimes \psi : \mathbb{Q}/\mathbb{Z}{ \otimes }_{\mathbb{Z}}\mathbb{Z} \rightarrow \mathbb{Q}/\mathbb{Z} \otimes \mathbb{Z} 在其核中具有非零元素 (12+Z)1\left( {\frac{1}{2} + \mathbb{Z}}\right) \otimes 1 - 识别 Q/Z=Q/ZZZ\mathbb{Q}/\mathbb{Z} = \mathbb{Q}/\mathbb{Z}{ \otimes }_{\mathbb{Z}}\mathbb{Z} 这意味着乘以2在核中有元素 1/21/2)。

(4) The direct sum of flat modules is flat (Exercise 5). In particular, QZ\mathbb{Q} \oplus \mathbb{Z} is flat. This module is neither projective nor injective (since Q\mathbb{Q} is not projective by Exercise 8 and Z\mathbb{Z} is not injective by Proposition 36 (cf. Exercises 3 and 4).

(4) 扁平模的直和是扁平的(练习5)。特别是,QZ\mathbb{Q} \oplus \mathbb{Z} 是扁平的。这个模既不是投射的也不是可注入的(因为 Q\mathbb{Q} 不是投射的,由练习8得出,Z\mathbb{Z} 不是可注入的,由命题36得出(参见练习3和4))。

We close this section with an important relation between Hom and tensor products:

我们以一个Hom和张量积之间的重要关系结束这一节:

Theorem 43. (Adjoint Associativity) Let RR and SS be rings,let AA be a right RR -module,let BB be an(R,S)-bimodule and let CC be a right SS -module. Then there is an isomorphism of abelian groups:

定理43.(伴随结合律)设 RRSS 是环,AA 是一个右 RR -模,BB 是一个(R,S)-双边模,CC 是一个右 SS -模。那么存在阿贝尔群的同构:

HomS(ARB,C)HomR(A,HomS(B,C)){\operatorname{Hom}}_{S}\left( {A{ \otimes }_{R}B,C}\right) \cong {\operatorname{Hom}}_{R}\left( {A,{\operatorname{Hom}}_{S}\left( {B,C}\right) }\right)

(the homomorphism groups are right module homomorphisms-note that HomS(B,C){\operatorname{Hom}}_{S}\left( {B,C}\right) has the structure of a right RR -module,cf. the exercises). If R=SR = S is commutative this is an isomorphism of RR -modules with the standard RR -module structures.

(同态群是右模同态 - 注意 HomS(B,C){\operatorname{Hom}}_{S}\left( {B,C}\right) 具有右 RR -模的结构,参见练习)。如果 R=SR = S 是交换的,这是一个 RR -模的同构,具有标准的 RR -模结构。

Proof: Suppose φ:ARBC\varphi : A{ \otimes }_{R}B \rightarrow C is a homomorphism. For any fixed aAa \in A define the map Φ(a)\Phi \left( a\right) from BB to CC by Φ(a)(b)=φ(ab)\Phi \left( a\right) \left( b\right) = \varphi \left( {a \otimes b}\right) . It is easy to check that Φ(a)\Phi \left( a\right) is a homomorphism of right SS -modules and that the map Φ\Phi from AA to HomS(B,C){\operatorname{Hom}}_{S}\left( {B,C}\right) given by mapping aa to Φ(a)\Phi \left( a\right) is a homomorphism of right RR -modules. Then f(φ)=Φf\left( \varphi \right) = \Phi defines a group homomorphism from HomS(ARB,C){\operatorname{Hom}}_{S}\left( {A{ \otimes }_{R}B,C}\right) to HomR(A,HomS(B,C)){\operatorname{Hom}}_{R}\left( {A,{\operatorname{Hom}}_{S}\left( {B,C}\right) }\right) . Conversely,suppose Φ:AHomS(B,C)\Phi : A \rightarrow {\operatorname{Hom}}_{S}\left( {B,C}\right) is a homomorphism. The map from A×BA \times B to CC defined by mapping(a,b)to Φ(a)(c)\Phi \left( a\right) \left( c\right) is an RR -balanced map,so induces a homomorphism φ\varphi from ARBA{ \otimes }_{R}B to CC . Then g(Φ)=φg\left( \Phi \right) = \varphi defines a group homomorphism inverse to ff and gives the isomorphism in the theorem.

证明:假设 φ:ARBC\varphi : A{ \otimes }_{R}B \rightarrow C 是一个同态。对于任意固定的 aAa \in A ,定义从 BBCC 的映射 Φ(a)\Phi \left( a\right) 通过 Φ(a)(b)=φ(ab)\Phi \left( a\right) \left( b\right) = \varphi \left( {a \otimes b}\right) 。容易验证 Φ(a)\Phi \left( a\right) 是一个右 SS -模的同态,且由将 aa 映射到 Φ(a)\Phi \left( a\right) 的映射 Φ\PhiAAHomS(B,C){\operatorname{Hom}}_{S}\left( {B,C}\right) 是一个右 RR -模的同态。那么 f(φ)=Φf\left( \varphi \right) = \Phi 定义了一个从 HomS(ARB,C){\operatorname{Hom}}_{S}\left( {A{ \otimes }_{R}B,C}\right)HomR(A,HomS(B,C)){\operatorname{Hom}}_{R}\left( {A,{\operatorname{Hom}}_{S}\left( {B,C}\right) }\right) 的群同态。反之,假设 Φ:AHomS(B,C)\Phi : A \rightarrow {\operatorname{Hom}}_{S}\left( {B,C}\right) 是一个同态。由将 (a,b) 映射到 Φ(a)(c)\Phi \left( a\right) \left( c\right) 定义的从 A×BA \times BCC 的映射是一个 RR -平衡映射,因此诱导出一个从 ARBA{ \otimes }_{R}BCC 的同态 φ\varphi 。那么 g(Φ)=φg\left( \Phi \right) = \varphi 定义了一个与 ff 逆的群同态,并给出了定理中的同构。

As a first application of Theorem 43 we give an alternate proof of the first result in Theorem 39 that the tensor product is right exact in the case where S=RS = R is a commutative ring. If 0LMN00 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0 is exact,then by Theorem 33 the sequence

作为定理 43 的第一个应用,我们给出了定理 39 中第一个结果的另一种证明,即当 S=RS = R 是一个交换环时,张量积在右边是准确的。如果 0LMN00 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0 是准确的,那么根据定理 33,序列

0HomR(N,E)HomR(M,E)HomR(L,E)0 \rightarrow {\operatorname{Hom}}_{R}\left( {N,E}\right) \rightarrow {\operatorname{Hom}}_{R}\left( {M,E}\right) \rightarrow {\operatorname{Hom}}_{R}\left( {L,E}\right)

is exact for every RR -module EE . Then by Theorem 28,the sequence

对于每个 RR -模 EE 是准确的。然后根据定理 28,序列

0HomR(D,HomR(N,E))HomR(D,HomR(M,E))HomR(D,HomR(L,E))0 \rightarrow {\mathrm{{Hom}}}_{R}\left( {D,{\mathrm{{Hom}}}_{R}\left( {N,E}\right) }\right) \rightarrow {\mathrm{{Hom}}}_{R}\left( {D,{\mathrm{{Hom}}}_{R}\left( {M,E}\right) }\right) \rightarrow {\mathrm{{Hom}}}_{R}\left( {D,{\mathrm{{Hom}}}_{R}\left( {L,E}\right) }\right)

is exact for all DD and all EE . By adjoint associativity,this means the sequence

对于所有 DD 和所有 EE 是准确的。由于伴随结合律,这意味着序列

0HomR(DRN,E)HomR(DRM,E)HomR(DRL,E)0 \rightarrow {\operatorname{Hom}}_{R}\left( {D{ \otimes }_{R}N,E}\right) \rightarrow {\operatorname{Hom}}_{R}\left( {D{ \otimes }_{R}M,E}\right) \rightarrow {\operatorname{Hom}}_{R}\left( {D{ \otimes }_{R}L,E}\right)

is exact for any DD and all EE . Then,by the second part of Theorem 33,it follows that the sequence

对于任意的 DD 和所有 EE 是准确的。接着,根据定理 33 的第二部分,可以得出序列

DRLDRMDRN0D{ \otimes }_{R}L \rightarrow D{ \otimes }_{R}M \rightarrow D{ \otimes }_{R}N \rightarrow 0

is exact for all DD ,which is the right exactness of the tensor product.

对于所有 DD 是准确的,这就是张量积在右边的准确性。

As a second application of Theorem 43 we prove that the tensor product of two projective modules over a commutative ring RR is again projective (see also Exercise 9 for a more direct proof).

作为定理43的第二个应用,我们证明了两个在交换环上的投影模的张量积 RR 再次是投影的(也参见练习9以获得更直接的证明)。

Corollary 44. If RR is commutative then the tensor product of two projective RR -modules is projective.

推论44。如果 RR 是交换的,那么两个投影 RR -模的张量积是投影的。

Proof: Let P1{P}_{1} and P2{P}_{2} be projective modules. Then by Corollary 32, HomR(P2,_){\operatorname{Hom}}_{R}\left( {{P}_{2},\_ }\right) is an exact functor from the category of RR -modules to the category of RR -modules. Then the composition HomR(P1,HomR(P2,__)){\operatorname{Hom}}_{R}\left( {{P}_{1},{\operatorname{Hom}}_{R}\left( {{P}_{2},\_ \_ }\right) }\right) is an exact functor by the same corollary. By Theorem 43 this means that HomR(P1RP2,__){\mathrm{{Hom}}}_{R}\left( {{P}_{1}{ \otimes }_{R}{P}_{2},\_ \_ }\right) is an exact functor on RR -modules. It follows again from Corollary 32 that P1RP2{P}_{1}{ \otimes }_{R}{P}_{2} is projective.

证明:设 P1{P}_{1}P2{P}_{2} 是投影模。那么根据推论32,HomR(P2,_){\operatorname{Hom}}_{R}\left( {{P}_{2},\_ }\right) 是从 RR -模范畴到 RR -模范畴的精确函子。因此,复合 HomR(P1,HomR(P2,__)){\operatorname{Hom}}_{R}\left( {{P}_{1},{\operatorname{Hom}}_{R}\left( {{P}_{2},\_ \_ }\right) }\right) 也是由同一推论得出的精确函子。根据定理43,这意味着 HomR(P1RP2,__){\mathrm{{Hom}}}_{R}\left( {{P}_{1}{ \otimes }_{R}{P}_{2},\_ \_ }\right) 是在 RR -模上的精确函子。再次根据推论32,得出 P1RP2{P}_{1}{ \otimes }_{R}{P}_{2} 是投影的。

Summary

总结

Each of the functors HomR(A,_),HomR(_,A){\operatorname{Hom}}_{R}\left( {A,\_ }\right) ,{\operatorname{Hom}}_{R}\left( {\_ ,A}\right) ,and ARA{ \otimes }_{R} _____,map left RR -modules to abelian groups; the functor _RA\_ { \otimes }_{R}A maps right RR -modules to abelian groups. When RR is commutative all four functors map RR -modules to RR -modules.

(1) Let AA be a left RR -module. The functor HomR(A,_){\operatorname{Hom}}_{R}\left( {A,\_ }\right) is covariant and left exact; the module AA is projective if and only if HomR(A,_){\operatorname{Hom}}_{R}\left( {A,\_ }\right) is exact (i.e.,is also right exact).

(2) Let AA be a left RR -module. The functor HomR(_,A){\operatorname{Hom}}_{R}\left( {\_ ,A}\right) is contravariant and left exact; the module AA is injective if and only if HomR(_,A){\operatorname{Hom}}_{R}\left( {\_ ,A}\right) is exact.

(2) 设 AA 是一个左 RR -模。函子 HomR(_,A){\operatorname{Hom}}_{R}\left( {\_ ,A}\right) 是反变和左精确的;模块 AA 是可内射的当且仅当 HomR(_,A){\operatorname{Hom}}_{R}\left( {\_ ,A}\right) 是精确的。

(3) Let AA be a right RR -module. The functor ARA{ \otimes }_{R} is covariant and right exact; the module AA is flat if and only if ARA{ \otimes }_{R} _____is exact (i.e.,is also left exact).

(3) 设 AA 是一个右 RR -模。函子 ARA{ \otimes }_{R} 是协变和右精确的;模块 AA 是平坦的当且仅当 ARA{ \otimes }_{R} _____是精确的(即,也是左精确的)。

(4) Let AA be a left RR -module. The functor _RA\_ { \otimes }_{R}A is covariant and right exact; the module AA is flat if and only if _RA\_ { \otimes }_{R}A is exact.

(4) 设 AA 是一个左 RR -模。函子 _RA\_ { \otimes }_{R}A 是协变和右精确的;模块 AA 是平坦的当且仅当 _RA\_ { \otimes }_{R}A 是精确的。

(5) Projective modules are flat. The Z\mathbb{Z} -module Q/Z\mathbb{Q}/\mathbb{Z} is injective but not flat. The Z\mathbb{Z} -module ZQ\mathbb{Z} \oplus \mathbb{Q} is flat but neither projective nor injective.

(5) 投影模是平坦的。 Z\mathbb{Z} -模 Q/Z\mathbb{Q}/\mathbb{Z} 是可内射的但不是平坦的。 Z\mathbb{Z} -模 ZQ\mathbb{Z} \oplus \mathbb{Q} 是平坦的但既不投影也不可内射。

EXERCISES

练习题

Let RR be a ring with 1 . 1. Suppose that

RR 是一个带有单位元的环。1. 假设

is a commutative diagram of groups and that the rows are exact. Prove that

是一个群交换图,且行是精确的。证明

(a) if φ\varphi and α\alpha are surjective,and β\beta is injective then γ\gamma is injective. [If ckerγc \in \ker \gamma ,show there is a bBb \in B with φ(b)=c\varphi \left( b\right) = c . Show that φ(β(b))=0{\varphi }^{\prime }\left( {\beta \left( b\right) }\right) = 0 and deduce that β(b)=ψ(a)\beta \left( b\right) = {\psi }^{\prime }\left( {a}^{\prime }\right) for some aA{a}^{\prime } \in {A}^{\prime } . Show there is an aAa \in A with α(a)=a\alpha \left( a\right) = {a}^{\prime } and that β(ψ(a))=β(b)\beta \left( {\psi \left( a\right) }\right) = \beta \left( b\right) . Conclude that b=ψ(a)b = \psi \left( a\right) and hence c=φ(b)=0c = \varphi \left( b\right) = 0 .]

(a) 如果 φ\varphiα\alpha 是满射,且 β\beta 是单射,那么 γ\gamma 是单射。 [如果 ckerγc \in \ker \gamma ,则存在一个 bBb \in B 使得 φ(b)=c\varphi \left( b\right) = c 。证明 φ(β(b))=0{\varphi }^{\prime }\left( {\beta \left( b\right) }\right) = 0 并推导出 β(b)=ψ(a)\beta \left( b\right) = {\psi }^{\prime }\left( {a}^{\prime }\right) 对于某个 aA{a}^{\prime } \in {A}^{\prime } 成立。证明存在一个 aAa \in A 使得 α(a)=a\alpha \left( a\right) = {a}^{\prime } 并且 β(ψ(a))=β(b)\beta \left( {\psi \left( a\right) }\right) = \beta \left( b\right) 。得出 b=ψ(a)b = \psi \left( a\right) ,因此 c=φ(b)=0c = \varphi \left( b\right) = 0 。]

(b) if ψ,α{\psi }^{\prime },\alpha ,and γ\gamma are injective,then β\beta is injective,

(b) 如果 ψ,α{\psi }^{\prime },\alphaγ\gamma 是单射,那么 β\beta 是单射,

(c) if φ,α\varphi ,\alpha ,and γ\gamma are surjective,then β\beta is surjective,

(c) 如果 φ,α\varphi ,\alphaγ\gamma 是满射,那么 β\beta 是满射,

(d) if β\beta is injective, α\alpha and γ\gamma are surjective,then γ\gamma is injective,

(d) 如果 β\beta 是单射, α\alphaγ\gamma 是满射,那么 γ\gamma 是单射,

(e) if β\beta is surjective, γ\gamma and ψ{\psi }^{\prime } are injective,then α\alpha is surjective.

(e) 如果 β\beta 是满射, γ\gammaψ{\psi }^{\prime } 是单射,那么 α\alpha 是满射。

2. Suppose that

2. 假设

is a commutative diagram of groups, and that the rows are exact. Prove that

是一个群交换图,且行是精确的。证明

(a) if α\alpha is surjective,and β,δ\beta ,\delta are injective,then γ\gamma is injective.

(a) 如果 α\alpha 是满射,且 β,δ\beta ,\delta 是单射,那么 γ\gamma 是单射。

(b) if δ\delta is injective,and α,γ\alpha ,\gamma are surjective,then β\beta is surjective.

(b) 如果 δ\delta 是单射,且 α,γ\alpha ,\gamma 是满射,那么 β\beta 是满射。

  1. Let P1{P}_{1} and P2{P}_{2} be RR -modules. Prove that P1P2{P}_{1} \oplus {P}_{2} is a projective RR -module if and only if both P1{P}_{1} and P2{P}_{2} are projective.

  2. P1{P}_{1}P2{P}_{2}RR -模。证明 P1P2{P}_{1} \oplus {P}_{2} 是一个投射 RR -模当且仅当 P1{P}_{1}P2{P}_{2} 都是投射的。

  3. Let Q1{Q}_{1} and Q2{Q}_{2} be RR -modules. Prove that Q1Q2{Q}_{1} \oplus {Q}_{2} is an injective RR -module if and only if both Q1{Q}_{1} and Q2{Q}_{2} are injective.

  4. Q1{Q}_{1}Q2{Q}_{2}RR -模。证明 Q1Q2{Q}_{1} \oplus {Q}_{2} 是一个可注入 RR -模当且仅当 Q1{Q}_{1}Q2{Q}_{2} 都是不可注入的。

  5. Let A1{A}_{1} and A2{A}_{2} be RR -modules. Prove that A1A2{A}_{1} \oplus {A}_{2} is a flat RR -module if and only if both A1{A}_{1} and A2{A}_{2} are flat. More generally,prove that an arbitrary direct sum Ai\sum {A}_{i} of RR -modules is flat if and only if each Ai{A}_{i} is flat. [Use the fact that tensor product commutes with arbitrary direct sums.]

  6. A1{A}_{1}A2{A}_{2}RR -模。证明 A1A2{A}_{1} \oplus {A}_{2} 是一个平坦 RR -模当且仅当 A1{A}_{1}A2{A}_{2} 都是平坦的。更一般地,证明任意直和 Ai\sum {A}_{i}RR -模是平坦的当且仅当每个 Ai{A}_{i} 都是平坦的。[使用张量积与任意直和交换的事实。]

  7. Prove that the following are equivalent for a ring RR :

  8. 证明对于一个环 RR 以下条件是等价的:

(i) Every RR -module is projective.

(i) 每个 RR -模都是投射的。

(ii) Every RR -module is injective.

(ii) 每个 RR -模都是可注入的。

  1. Let AA be a nonzero finite abelian group.

  2. AA 是一个非零有限阿贝尔群。

(a) Prove that AA is not a projective Z\mathbb{Z} -module.

(a) 证明 AA 不是一个投射 Z\mathbb{Z} -模。

(b) Prove that AA is not an injective Z\mathbb{Z} -module.

(b) 证明 AA 不是一个可注入 Z\mathbb{Z} -模。

  1. Let QQ be a nonzero divisible Z\mathbb{Z} -module. Prove that QQ is not a projective Z\mathbb{Z} -module. Deduce that the rational numbers Q\mathbb{Q} is not a projective Z\mathbb{Z} -module. [Show first that if FF is any free module then n=1nF=0{ \cap }_{n = 1}^{\infty }{nF} = 0 (use a basis of FF to prove this). Now suppose to the contrary that QQ is projective and derive a contradiction from Proposition 30(4).]

  2. QQ 是一个非零的可除 Z\mathbb{Z} -模。证明 QQ 不是一个投射 Z\mathbb{Z} -模。推导出有理数 Q\mathbb{Q} 不是一个投射 Z\mathbb{Z} -模。(首先证明如果 FF 是任意自由模,那么 n=1nF=0{ \cap }_{n = 1}^{\infty }{nF} = 0(使用 FF 的基来证明这一点)。现在假设 QQ 是投射的,并从命题 30(4) 推导出矛盾。]

  3. Assume RR is commutative with 1 .

  4. 假设 RR 是带有单位元 1 的交换环。

(a) Prove that the tensor product of two free RR -modules is free. [Use the fact that tensor products commute with direct sums.]

(a) 证明两个自由 RR -模的张量积是自由的。[使用张量积与直和可交换的事实。]

(b) Use (a) to prove that the tensor product of two projective RR -modules is projective.

(b) 利用 (a) 证明两个投射 RR -模的张量积是投射的。

  1. Let RR and SS be rings with 1 and let MM and NN be left RR -modules. Assume also that MM is an(R,S)-bimodule.

  2. RRSS 是带有单位元的环,并且设 MMNN 是左 RR -模。还假设 MM 是一个 (R,S)-双模。

(a) For sSs \in S and for φHomR(M,N)\varphi \in {\operatorname{Hom}}_{R}\left( {M,N}\right) define (sφ):MN\left( {s\varphi }\right) : M \rightarrow N by (sφ)(m)=φ(ms)\left( {s\varphi }\right) \left( m\right) = \varphi \left( {ms}\right) . Prove that sφ{s\varphi } is a homomorphism of left RR -modules,and that this action of SS on HomR(M,N){\operatorname{Hom}}_{R}\left( {M,N}\right) makes it into a left SS -module.

(a) 对于 sSs \in SφHomR(M,N)\varphi \in {\operatorname{Hom}}_{R}\left( {M,N}\right),通过 (sφ)(m)=φ(ms)\left( {s\varphi }\right) \left( m\right) = \varphi \left( {ms}\right) 定义 (sφ):MN\left( {s\varphi }\right) : M \rightarrow N。证明 sφ{s\varphi } 是左 RR -模的同态,并且 SSHomR(M,N){\operatorname{Hom}}_{R}\left( {M,N}\right) 的这种作用使其成为一个左 SS -模。

(b) Let S=RS = R and let M=RM = R (considered as an(R,R)-bimodule by left and right ring multiplication on itself). For each nNn \in N define φn:RN{\varphi }_{n} : R \rightarrow N by φn(r)=rn{\varphi }_{n}\left( r\right) = {rn} , i.e., φn{\varphi }_{n} is the unique RR -module homomorphism mapping 1R{1}_{R} to nn . Show that φn{\varphi }_{n} \in HomR(R,N){\operatorname{Hom}}_{R}\left( {R,N}\right) . Use part (a) to show that the map nφnn \mapsto {\varphi }_{n} is an isomorphism of left RR -modules: NHomR(R,N)N \cong {\operatorname{Hom}}_{R}\left( {R,N}\right) .

(b) 设 S=RS = R 并且设 M=RM = R(将其视为通过自身上的左和右环乘法作为 (R,R)-双模)。对于每个 nNn \in N,定义 φn:RN{\varphi }_{n} : R \rightarrow Nφn(r)=rn{\varphi }_{n}\left( r\right) = {rn},即 φn{\varphi }_{n} 是唯一的 RR -模同态,将 1R{1}_{R} 映射到 nn。证明 φn{\varphi }_{n} \in HomR(R,N){\operatorname{Hom}}_{R}\left( {R,N}\right)。使用部分 (a) 来证明映射 nφnn \mapsto {\varphi }_{n} 是左 RR -模的同构:NHomR(R,N)N \cong {\operatorname{Hom}}_{R}\left( {R,N}\right)

(c) Deduce that if NN is a free (respectively,projective,injective,fiat) left RR -module,then HomR(R,N){\operatorname{Hom}}_{R}\left( {R,N}\right) is also a free (respectively,projective,injective,flat) left RR -module.

(c) 推导出如果 NN 是一个自由的(分别地,投射的、内射的、平坦的)左 RR -模,那么 HomR(R,N){\operatorname{Hom}}_{R}\left( {R,N}\right) 也是一个自由的(分别地,投射的、内射的、平坦的)左 RR -模。

  1. Let RR and SS be rings with 1 and let MM and NN be left RR -modules. Assume also that NN is an (R,S)-bimodule.

  2. RRSS 是带有单位元的环,并且设 MMNN 是左 RR -模。还假设 NN 是一个 (R,S)-双模。

(a) For sSs \in S and for φHomR(M,N)\varphi \in {\operatorname{Hom}}_{R}\left( {M,N}\right) define (φs):MN\left( {\varphi s}\right) : M \rightarrow N by (φs)(m)=φ(m)s\left( {\varphi s}\right) \left( m\right) = \varphi \left( m\right) s . Prove that φs{\varphi s} is a homomorphism of left RR -modules,and that this action of SS on HomR(M,N){\operatorname{Hom}}_{R}\left( {M,N}\right) makes it into a right SS -module. Deduce that HomR(M,R){\operatorname{Hom}}_{R}\left( {M,R}\right) is a right RR -module,for any RR -module MM -called the dual module to M.M. . .

(a) 对于 sSs \in S 和对于 φHomR(M,N)\varphi \in {\operatorname{Hom}}_{R}\left( {M,N}\right),定义 (φs):MN\left( {\varphi s}\right) : M \rightarrow N(φs)(m)=φ(m)s\left( {\varphi s}\right) \left( m\right) = \varphi \left( m\right) s。证明 φs{\varphi s} 是左 RR -模的同态,并且这个 SSHomR(M,N){\operatorname{Hom}}_{R}\left( {M,N}\right) 的作用使其成为一个右 SS -模。推导出 HomR(M,R){\operatorname{Hom}}_{R}\left( {M,R}\right) 是一个右 RR -模,对于任何 RR -模 MM -称为 M.M. 的对偶模。

(b) Let N=RN = R be considered as an(R,R)-bimodule as usual. Under the action defined in part (a) show that the map rφrr \mapsto {\varphi }_{r} is an isomorphism of right RR -modules: HomR(R,R)R{\operatorname{Hom}}_{R}\left( {R,R}\right) \cong R ,where φr{\varphi }_{r} is the homomorphism that maps 1R{1}_{R} to rr . Deduce that if MM is a finitely generated free left RR -module,then HomR(M,R){\operatorname{Hom}}_{R}\left( {M,R}\right) is a free right RR -module of the same rank. (cf. also Exercise 13.)

(b) 将 N=RN = R 视为一个 (R,R)-双模,如通常情况。在部分 (a) 定义的作用下,证明映射 rφrr \mapsto {\varphi }_{r} 是一个右 RR -模的同构:HomR(R,R)R{\operatorname{Hom}}_{R}\left( {R,R}\right) \cong R,其中 φr{\varphi }_{r} 是同态,将 1R{1}_{R} 映射到 rr。推导出如果 MM 是一个有限生成的自由左 RR -模,那么 HomR(M,R){\operatorname{Hom}}_{R}\left( {M,R}\right) 是一个同阶的自由右 RR -模。(参见练习 13。)

(c) Show that if MM is a finitely generated projective RR -module then its dual module HomR(M,R){\operatorname{Hom}}_{R}\left( {M,R}\right) is also projective.

(c) 证明如果 MM 是一个有限生成的投射 RR -模,那么它的对偶模 HomR(M,R){\operatorname{Hom}}_{R}\left( {M,R}\right) 也是投射的。

  1. Let AA be an RR -module,let II be any nonempty index set and for each iIi \in I let Bi{B}_{i} be an RR -module. Prove the following isomorphisms of abelian groups; when RR is commutative prove also that these are RR -module isomorphisms. (Arbitrary direct sums and direct products of modules are introduced in Exercise 20 of Section 3.)

  2. AA 是一个 RR -模,II 是任意非空指标集,对于每个 iIi \in I,设 Bi{B}_{i} 是一个 RR -模。证明以下阿贝尔群的同构;当 RR 是交换的时候,也证明这些是 RR -模的同构。(模块的任意直和与直积在第3节的练习20中引入。)

(a) HomR(iIBi,A)iIHomR(Bi,A){\operatorname{Hom}}_{R}\left( {{\bigoplus }_{i \in I}{B}_{i},A}\right) \cong \mathop{\prod }\limits_{{i \in I}}{\operatorname{Hom}}_{R}\left( {{B}_{i},A}\right)

(a) HomR(iIBi,A)iIHomR(Bi,A){\operatorname{Hom}}_{R}\left( {{\bigoplus }_{i \in I}{B}_{i},A}\right) \cong \mathop{\prod }\limits_{{i \in I}}{\operatorname{Hom}}_{R}\left( {{B}_{i},A}\right)

(b) HomR(A,iIBi)iIHomR(A,Bi){\operatorname{Hom}}_{R}\left( {A,\mathop{\prod }\limits_{{i \in I}}{B}_{i}}\right) \cong \mathop{\prod }\limits_{{i \in I}}{\operatorname{Hom}}_{R}\left( {A,{B}_{i}}\right) .

(b) HomR(A,iIBi)iIHomR(A,Bi){\operatorname{Hom}}_{R}\left( {A,\mathop{\prod }\limits_{{i \in I}}{B}_{i}}\right) \cong \mathop{\prod }\limits_{{i \in I}}{\operatorname{Hom}}_{R}\left( {A,{B}_{i}}\right)

  1. (a) Show that the dual of the free Z\mathbb{Z} -module with countable basis is not free. [Use the preceding exercise and Exercise 24, Section 3.] (See also Exercise 5 in Section 11.3.)

  2. (a) 证明具有可数基的自由 Z\mathbb{Z} -模的对偶不是自由的。[使用前一个练习和第3节的练习24。](也参见第11.3节的练习5。)

(b) Show that the dual of the free Z\mathbb{Z} -module with countable basis is also not projective. [You may use the fact that any submodule of a free Z\mathbb{Z} -module is free.]

(b) 证明具有可数基的自由 Z\mathbb{Z} -模的对偶也不是投射的。[你可以使用这样一个事实:任何自由 Z\mathbb{Z} -模的子模都是自由的。]

  1. Let 0LψMφN00 \rightarrow L\overset{\psi }{ \rightarrow }M\overset{\varphi }{ \rightarrow }N \rightarrow 0 be a sequence of RR -modules.

  2. 0LψMφN00 \rightarrow L\overset{\psi }{ \rightarrow }M\overset{\varphi }{ \rightarrow }N \rightarrow 0 是一个 RR -模的序列。

(a) Prove that the associated sequence

0HomR(D,L)ψHomR(D,M)φHomR(D,N)00 \rightarrow {\operatorname{Hom}}_{R}\left( {D,L}\right) \overset{{\psi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {D,M}\right) \overset{{\varphi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {D,N}\right) \rightarrow 0

is a short exact sequence of abelian groups for all RR -modules DD if and only if the original sequence is a split short exact sequence. [To show the sequence splits, take D=ND = N and show the lift of the identity map in HomR(N,N){\operatorname{Hom}}_{R}\left( {N,N}\right) to HomR(N,M){\operatorname{Hom}}_{R}\left( {N,M}\right) is a splitting homomorphism for φ\varphi .]

(b) Prove that the associated sequence

0HomR(N,D)φHomR(M,D)ψHomR(L,D)00 \rightarrow {\operatorname{Hom}}_{R}\left( {N,D}\right) \overset{{\varphi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {M,D}\right) \overset{{\psi }^{\prime }}{ \rightarrow }{\operatorname{Hom}}_{R}\left( {L,D}\right) \rightarrow 0

is a short exact sequence of abelian groups for all RR -modules DD if and only if the original sequence is a split short exact sequence.

  1. Let MM be a left RR -module where RR is a ring with 1 .

(a) Show that HomZ(R,M){\operatorname{Hom}}_{\mathbb{Z}}\left( {R,M}\right) is a left RR -module under the action (rφ)(r)=φ(rr)\left( {r\varphi }\right) \left( {r}^{\prime }\right) = \varphi \left( {{r}^{\prime }r}\right) (see Exercise 10).

(b) Suppose that 0AψB0 \rightarrow A\overset{\psi }{ \rightarrow }B is an exact sequence of RR -modules. Prove that if every homomorphism ff from AA to MM lifts to a homomorphism FF from BB to MM with f=f = Fψ,then  every  homomorphism  f  from  A  to  HomZ(R,M)  lifts  to  a  homomorphismF \circ \psi ,\mathrm{{then}}\;\mathrm{{every}}\;\mathrm{{homomorphism}}\;{f}^{\prime }\;\mathrm{{from}}\;A\;\mathrm{{to}}\;{\mathrm{{Hom}}}_{\mathbb{Z}}\left( {R,M}\right) \;\mathrm{{lifts}}\;\mathrm{{to}}\;\mathrm{a}\;\mathrm{{homomorphism}} FfromBtoHomZ(R,M){F}^{\prime }\operatorname{from}B\operatorname{to}{\operatorname{Hom}}_{\mathbb{Z}}\left( {R,M}\right) with f=Fψ.{f}^{\prime } = {F}^{\prime } \circ \psi . [Given f,{f}^{\prime }, show that f(a)=f(a)(1R)f\left( a\right) = {f}^{\prime }\left( a\right) \left( {1}_{R}\right) defines a homomorphism of AA to MM . If FF is the associated lift of ff to BB ,show that F(b)(r)=F(rb){F}^{\prime }\left( b\right) \left( r\right) = F\left( {rb}\right) defines a homomorphism from BB to HomZ(R,M){\operatorname{Hom}}_{\mathbb{Z}}\left( {R,M}\right) that lifts f{f}^{\prime } .]

(c) Prove that if QQ is an injective RR -module then HomZ(R,Q){\operatorname{Hom}}_{\mathbb{Z}}\left( {R,Q}\right) is also an injective RR - module.

  1. This exercise proves Theorem 38 that every left RR -module MM is contained in an injective left RR -module.

(a) Show that MM is contained in an injective Z\mathbb{Z} -module QQ . [ MM is a Z\mathbb{Z} -module-use Corollary 37.]

(b) Show that HomR(R,M)HomZ(R,M)HomZ(R,Q){\operatorname{Hom}}_{R}\left( {R,M}\right) \subseteq {\operatorname{Hom}}_{\mathbb{Z}}\left( {R,M}\right) \subseteq {\operatorname{Hom}}_{\mathbb{Z}}\left( {R,Q}\right) .

(c) Use the RR -module isomorphism MHomR(R,M)M \cong {\operatorname{Hom}}_{R}\left( {R,M}\right) (Exercise 10) and the previous exercise to conclude that MM is contained in an injective module.

  1. This exercise completes the proof of Proposition 34. Suppose that QQ is an RR -module with the property that every short exact sequence 0QM1N00 \rightarrow Q \rightarrow {M}_{1} \rightarrow N \rightarrow 0 splits and suppose that the sequence 0LψM0 \rightarrow L\overset{\psi }{ \rightarrow }M is exact. Prove that every RR -module homomorphism ff from LL to QQ can be lifted to an RR -module homomorphism FF from MM to QQ with f=Fψf = F \circ \psi . [By the previous exercise, QQ is contained in an injective RR -module. Use the splitting property together with Exercise 4 (noting that Exercise 4 can be proved using (2) in Proposition 34 as the definition of an injective module).]

  2. Prove that the injective hull of the Z\mathbb{Z} -module Z\mathbb{Z} is Q\mathbb{Q} . [Let HH be the injective hull of Z\mathbf{Z} and argue that Q\mathbb{Q} contains an isomorphic copy of HH . Use the divisibility of HH to show 1/nH1/n \in H for all nonzero integers nn ,and deduce that H=QH = \mathbb{Q} .]

  3. If FF is a field,prove that the injective hull of FF is FF .

  4. Prove that the polynomial ring R[x]R\left\lbrack x\right\rbrack in the indeterminate xx over the commutative ring R\mathbf{R} is a flat RR -module.

  5. Let RR and SS be rings with 1 and suppose MM is a right RR -module,and NN is an(R,S)- bimodule. If MM is flat over RR and NN is flat as an SS -module prove that MRNM{ \otimes }_{R}N is flat as a\mathbf{a} right SS -module.

  6. Suppose that RR is a commutative ring and that MM and NN are flat RR -modules. Prove that MRNM{ \otimes }_{R}N is a flat RR -module. [Use the previous exercise.]

  7. 假设 RR 是一个交换环,并且 MMNN 是平坦的 RR -模。证明 MRNM{ \otimes }_{R}N 是一个平坦的 RR -模。 [使用前一个练习。]

  8. Prove that the (right) module MRSM{ \otimes }_{R}S obtained by changing the base from the ring RR to the ring SS (by some homomorphism f:RSf : R \rightarrow S with f(1R)=1Sf\left( {1}_{R}\right) = {1}_{S} ,cf. Example 6 following Corollary 12 in Section 4) of the flat (right) RR -module MM is a flat SS -module.

  9. 证明通过将基从环 RR 变换到环 SS(通过某个同态 f:RSf : R \rightarrow S 使得 f(1R)=1Sf\left( {1}_{R}\right) = {1}_{S} ,参见第4节中例6后的推论12)得到的(右)模 MRSM{ \otimes }_{R}S ,其中 MM 是平坦的(右)RR -模,是一个平坦的 SS -模。

  10. Prove that AA is a flat RR -module if and only if for any left RR -modules LL and MM where LL is finitely generated,then ψ:LM\psi : L \rightarrow M injective implies that also 1ψ:ARLARM1 \otimes \psi : A{ \otimes }_{R}L \rightarrow A{ \otimes }_{R}M is injective. [Use the techniques in the proof of Corollary 42.]

  11. 证明 AA 是一个平坦的 RR -模当且仅当对于任何左 RR -模 LLMM ,其中 LL 是有限生成的,如果 ψ:LM\psi : L \rightarrow M 内射则 1ψ:ARLARM1 \otimes \psi : A{ \otimes }_{R}L \rightarrow A{ \otimes }_{R}M 也是内射。 [使用推论42证明中的技术。]

  12. (A Flatness Criterion) Parts (a)-(c) of this exercise prove that AA is a flat RR -module if and only if for every finitely generated ideal II of RR ,the map from ARIARRAA{ \otimes }_{R}I \rightarrow A{ \otimes }_{R}R \cong A induced by the inclusion   IR  \;I \subseteq R\; is again injective (or,equivalently, ARIAIAA{ \otimes }_{R}I \cong {AI} \subseteq A ).

  13. (平坦性准则)本练习的(a)-(c)部分证明了如果对于每个 RR 的有限生成理想 II ,由包含   IR  \;I \subseteq R\; 引发的映射 ARIARRAA{ \otimes }_{R}I \rightarrow A{ \otimes }_{R}R \cong A 再次是内射的(或者等价地 ARIAIAA{ \otimes }_{R}I \cong {AI} \subseteq A ),那么 AA 是一个平坦的 RR -模。

(a) Prove that if AA is flat then ARIARRA{ \otimes }_{R}I \rightarrow A{ \otimes }_{R}R is injective.

(a) 证明如果 AA 是平坦的,那么 ARIARRA{ \otimes }_{R}I \rightarrow A{ \otimes }_{R}R 是内射的。

(b) If ARIARRA{ \otimes }_{R}I \rightarrow A{ \otimes }_{R}R is injective for every finitely generated ideal II ,prove that ARIARRA{ \otimes }_{R}I \rightarrow A{ \otimes }_{R}R is injective for every ideal II . Show that if KK is any submodule of a finitely generated free module FF then ARKARFA{ \otimes }_{R}K \rightarrow A{ \otimes }_{R}F is injective. Show that the same is true for any free module FF . [Cf. the proof of Corollary 42.]

(b) 如果 ARIARRA{ \otimes }_{R}I \rightarrow A{ \otimes }_{R}R 对每个有限生成理想 II 都是单射,证明 ARIARRA{ \otimes }_{R}I \rightarrow A{ \otimes }_{R}R 对每个理想 II 也是单射。证明如果 KK 是有限生成自由模 FF 的任意子模,那么 ARKARFA{ \otimes }_{R}K \rightarrow A{ \otimes }_{R}F 是单射。证明对于任意自由模 FF 也是如此。 [参见命题42的证明。]

(c) Under the assumption in (b),suppose LL and MM are RR -modules and LψML\overset{\psi }{ \rightarrow }M is injective. Prove that ARL1ψARMA{ \otimes }_{R}L\overset{1 \otimes \psi }{ \rightarrow }A{ \otimes }_{R}M is injective and conclude that AA is flat. [Write MM as a quotient of the free module FF ,giving a short exact sequence

(c) 在 (b) 的假设下,假设 LLMMRR -模且 LψML\overset{\psi }{ \rightarrow }M 是单射。证明 ARL1ψARMA{ \otimes }_{R}L\overset{1 \otimes \psi }{ \rightarrow }A{ \otimes }_{R}M 是单射,并得出 AA 是平坦的。 [将 MM 写作自由模 FF 的商模,给出一个短正合序列]

0KFfM00 \rightarrow K \rightarrow F\overset{f}{ \rightarrow }M \rightarrow 0

Show that if J=f1(ψ(L))J = {f}^{-1}\left( {\psi \left( L\right) }\right) and ι:JF\iota : J \rightarrow F is the natural injection,then the diagram

证明如果 J=f1(ψ(L))J = {f}^{-1}\left( {\psi \left( L\right) }\right)ι:JF\iota : J \rightarrow F 是自然单射,那么该图

is commutative with exact rows. Show that the induced diagram ARKARFARM0A{ \otimes }_{R}K \rightarrow A{ \otimes }_{R}F \rightarrow A{ \otimes }_{R}M \rightarrow 0

是交换的,且行是正合的。证明诱导的图 ARKARFARM0A{ \otimes }_{R}K \rightarrow A{ \otimes }_{R}F \rightarrow A{ \otimes }_{R}M \rightarrow 0

is commutative with exact rows. Use (b) to show that 1ι1 \otimes \iota is injective,then use Exercise 1 to conclude that 1ψ1 \otimes \psi is injective.]

是交换的,且行是正合的。使用 (b) 证明 1ι1 \otimes \iota 是单射,然后使用练习1得出 1ψ1 \otimes \psi 是单射。]

(d) ( AA Flatness Criterion for quotients) Suppose A=F/KA = F/K where FF is flat (e.g.,if FF is free) and KK is an RR -submodule of FF . Prove that AA is flat if and only if FIK=KI{FI} \cap K = {KI} for every finitely generated ideal II of R.R. [Use (a) to prove FRIFIF{ \otimes }_{R}I \cong {FI} and observe the image of KRIK{ \otimes }_{R}I is KI{KI} ; tensor the exact sequence 0KFA00 \rightarrow K \rightarrow F \rightarrow A \rightarrow 0 with II to prove that ARIFI/KIA{ \otimes }_{R}I \cong {FI}/{KI} ,and apply the flatness criterion.]

(d) (商模的平坦性准则) 假设 AA 其中 FF 是平坦的(例如,如果 FF 是自由的)且 KKRR -子模 FF 。证明 AA 是平坦的当且仅当 FIK=KI{FI} \cap K = {KI} 对每个 R.R. 的有限生成理想 II 成立 [使用 (a) 证明 FRIFIF{ \otimes }_{R}I \cong {FI} 并观察 KRIK{ \otimes }_{R}I 的像为 KI{KI} ;将正合序列 0KFA00 \rightarrow K \rightarrow F \rightarrow A \rightarrow 0 张量 II 以证明 ARIFI/KIA{ \otimes }_{R}I \cong {FI}/{KI} ,并应用平坦性准则。]

  1. Suppose RR is a P.I.D. This exercise proves that AA is a flat RR -module if and only if AA is torsion free RR -module (i.e.,if aAa \in A is nonzero and rRr \in R ,then ra=0{ra} = 0 implies r=0r = 0 ).

  2. 假设 RR 是一个P.I.D.。这个练习证明了 AA 是一个平坦的 RR -模当且仅当 AA 是一个无扭的 RR -模(即,如果 aAa \in A 是非零的且 rRr \in R ,那么 ra=0{ra} = 0 蕴含 r=0r = 0 )。

(a) Suppose that AA is flat and for fixed rRr \in R consider the map ψr:RR{\psi }_{r} : R \rightarrow R defined by multiplication by r:ψr(x)=rxr : {\psi }_{r}\left( x\right) = {rx} . If rr is nonzero show that ψr{\psi }_{r} is an injection. Conclude from the flatness of AA that the map from AA to AA defined by mapping aa to ra{ra} is injective and that AA is torsion free.

(a) 假设 AA 是平坦的,对于固定的 rRr \in R ,考虑由乘以 r:ψr(x)=rxr : {\psi }_{r}\left( x\right) = {rx} 定义的映射 ψr:RR{\psi }_{r} : R \rightarrow R。如果 rr 是非零的,证明 ψr{\psi }_{r} 是单射。从 AA 的平坦性得出,由将 aa 映射到 ra{ra} 定义的从 AAAA 的映射是单射,且 AA 是无扭的。

(b) Suppose that AA is torsion free. If II is a nonzero ideal of RR ,then I=rRI = {rR} for some nonzero rRr \in R . Show that the map ψr{\psi }_{r} in (a) induces an isomorphism RIR \cong I of

(b) 假设 AA 是无扭的。如果 IIRR 的一个非零理想,那么对于某个非零的 rRr \in R ,有 I=rRI = {rR}。证明(a)中的映射 ψr{\psi }_{r} 引导出一个 AA -模的同构 RIR \cong I,并且 RR 与包含映射 I=rRI = {rR} 的复合是乘以 rRr \in R。证明复合 ψr{\psi }_{r} 对应于在识别 下的映射 RIR \cong I,并且由于 是无扭的,这个复合是单射。证明 是同构,并推断 是单射。使用前一个练习来得出 是平坦的结论。

RR -modules and that the composite RψIιRR\overset{\psi }{ \rightarrow }I\overset{\iota }{ \rightarrow }R of ψr{\psi }_{r} with the inclusion ι:IR\iota : I \subseteq R is multiplication by rr . Prove that the composite ARRψrARI1ιARRA{ \otimes }_{R}R\overset{\cup \otimes {\psi }_{r}}{ \rightarrow }A{ \otimes }_{R}I\overset{1 \otimes \iota }{ \rightarrow }A{ \otimes }_{R}R corresponds to the map araa \mapsto {ra} under the identification ARR=AA{ \otimes }_{R}R = A and that this composite is injective since AA is torsion free. Show that 1ψr1 \otimes {\psi }_{r} is an isomorphism and deduce that 1ι1 \otimes \iota is injective. Use the previous exercise to conclude that AA is flat.

RR -模和 RψIιRR\overset{\psi }{ \rightarrow }I\overset{\iota }{ \rightarrow }Rψr{\psi }_{r} -模。

  1. Let M,AM,A and BB be RR -modules.

  2. M,AM,ABBRR -模。

(a) Suppose f:AMf : A \rightarrow M and g:BMg : B \rightarrow M are RR -module homomorphisms. Prove that X={(a,b)aA,bBX = \{ \left( {a,b}\right) \mid a \in A,b \in B with f(a)=g(b)}f\left( a\right) = g\left( b\right) \} is an RR -submodule of the direct sum ABA \oplus B (called the pullback or fiber product of ff and gg ) and that there is a commutative diagram

(a) 假设 f:AMf : A \rightarrow Mg:BMg : B \rightarrow MRR -模同态。证明 X={(a,b)aA,bBX = \{ \left( {a,b}\right) \mid a \in A,b \in Bf(a)=g(b)}f\left( a\right) = g\left( b\right) \} 一起构成 RR -子模,该子模是直和 ABA \oplus B(称为 ffgg 的拉回或纤维积)的一个子模,并且存在一个交换图

where π1{\pi }_{1} and π2{\pi }_{2} are the natural projections onto the first and second components.

其中 π1{\pi }_{1}π2{\pi }_{2} 是到第一和第二分量的自然投影。

(b) Suppose f:MA{f}^{\prime } : M \rightarrow A and g:MB{g}^{\prime } : M \rightarrow B are RR -module homomorphisms. Prove that the quotient YY of ABA \oplus B by {(f(m),g(m))mM}\left\{ {\left( {{f}^{\prime }\left( m\right) , - {g}^{\prime }\left( m\right) }\right) \mid m \in M}\right\} is an RR -module (called the pushout or fiber sum of f{f}^{\prime } and g{g}^{\prime } ) and that there is a commutative diagram

(b) 假设 f:MA{f}^{\prime } : M \rightarrow Ag:MB{g}^{\prime } : M \rightarrow BRR -模同态。证明 ABA \oplus B{(f(m),g(m))mM}\left\{ {\left( {{f}^{\prime }\left( m\right) , - {g}^{\prime }\left( m\right) }\right) \mid m \in M}\right\} 的商 YY 是一个 RR -模(称为 f{f}^{\prime }g{g}^{\prime } 的推出或纤维和),并且存在一个交换图

where π1{\pi }_{1}^{\prime } and π2{\pi }_{2}^{\prime } are the natural maps to the quotient induced by the maps into the first and second components.

其中 π1{\pi }_{1}^{\prime }π2{\pi }_{2}^{\prime } 是由到第一和第二分量的映射诱导出的到商的天然映射。

  1. (a) (Schanuel’s Lemma) If 0KPφM00 \rightarrow K \rightarrow P\overset{\varphi }{ \rightarrow }M \rightarrow 0 and 0KPφM00 \rightarrow {K}^{\prime } \rightarrow {P}^{\prime }\overset{{\varphi }^{\prime }}{ \rightarrow }M \rightarrow 0 are exact sequences of RR -modules where PP and P{P}^{\prime } are projective,prove PKPKP \oplus {K}^{\prime } \cong {P}^{\prime } \oplus K as RR -modules. [Show that there is an exact sequence 0kerπXπP00 \rightarrow \ker \pi \rightarrow X\overset{\pi }{ \rightarrow }P \rightarrow 0 with kerπK\ker \pi \cong {K}^{\prime } ,where XX is the fiber product of φ\varphi and φ{\varphi }^{\prime } as in the previous exercise. Deduce that XPKX \cong P \oplus {K}^{\prime } . Show similarly that XPKX \cong {P}^{\prime } \oplus K .]

  2. (a) (Schanuel引理)如果 0KPφM00 \rightarrow K \rightarrow P\overset{\varphi }{ \rightarrow }M \rightarrow 00KPφM00 \rightarrow {K}^{\prime } \rightarrow {P}^{\prime }\overset{{\varphi }^{\prime }}{ \rightarrow }M \rightarrow 0RR -模的精确序列,其中 PPP{P}^{\prime } 是投射的,证明 PKPKP \oplus {K}^{\prime } \cong {P}^{\prime } \oplus K 作为 RR -模。[证明存在一个精确序列 0kerπXπP00 \rightarrow \ker \pi \rightarrow X\overset{\pi }{ \rightarrow }P \rightarrow 0 ,其中 kerπK\ker \pi \cong {K}^{\prime }XX 是如上练习中的 φ\varphiφ{\varphi }^{\prime } 的纤维积。推出 XPKX \cong P \oplus {K}^{\prime } 。类似地证明 XPKX \cong {P}^{\prime } \oplus K 。]

(b) If 0MQψL00 \rightarrow M \rightarrow Q\overset{\psi }{ \rightarrow }L \rightarrow 0 and 0MQψL00 \rightarrow M \rightarrow {Q}^{\prime }\overset{{\psi }^{\prime }}{ \rightarrow }{L}^{\prime } \rightarrow 0 are exact sequences of RR -modules where QQ and Q{Q}^{\prime } are injective,prove QLQLQ \oplus {L}^{\prime } \cong {Q}^{\prime } \oplus L as RR -modules.

(b) 如果 0MQψL00 \rightarrow M \rightarrow Q\overset{\psi }{ \rightarrow }L \rightarrow 00MQψL00 \rightarrow M \rightarrow {Q}^{\prime }\overset{{\psi }^{\prime }}{ \rightarrow }{L}^{\prime } \rightarrow 0RR -模的精确序列,其中 QQQ{Q}^{\prime } 是内射的,证明 QLQLQ \oplus {L}^{\prime } \cong {Q}^{\prime } \oplus L 作为 RR -模。

The RR -modules MM and NN are said to be projectively equivalent if MPNPM \oplus P \cong N \oplus {P}^{\prime } for some projective modules P,PP,{P}^{\prime } . Similarly, MM and NN are injectively equivalent if MQNQM \oplus Q \cong N \oplus {Q}^{\prime } for some injective modules Q,QQ,{Q}^{\prime } . The previous exercise shows KK and K{K}^{\prime } are projectively equivalent and LL and L{L}^{\prime } are injectively equivalent.

RR -模 MMNN 若存在 MPNPM \oplus P \cong N \oplus {P}^{\prime } 对于某些投射模 P,PP,{P}^{\prime } ,则称它们是投射等价的。类似地,MMNN 若存在 MQNQM \oplus Q \cong N \oplus {Q}^{\prime } 对于某些内射模 Q,QQ,{Q}^{\prime } ,则称它们是内射等价的。之前的练习表明 KKK{K}^{\prime } 是投射等价的,而 LLL{L}^{\prime } 是内射等价的。