If 0→L→ψM→φN→0 is a short exact sequence of R -modules then,instead of considering maps from an R -module D into L or N and the extent to which these determine maps from D into M ,we can consider the "dual" question of maps from L or N to D . In this case,it is easy to dispose of the situation of a map from N to D : an R -module map from N to D immediately gives a map from M to D simply by composing with φ . It is easy to check that this defines an injective homomorphism of abelian groups
如果 0→L→ψM→φN→0 是一个 R -模的短正合序列,那么,我们不必考虑从 R -模 D 到 L 或 N 的映射,以及这些映射在多大程度上决定了从 D 到 M 的映射,而是可以考虑“对偶”问题,即从 L 或 N 到 D 的映射。在这种情况下,很容易处理从 N 到 D 的映射情况:一个从 N 到 D 的 R -模映射,通过简单地与 φ 结合,立即给出了从 M 到 D 的映射。很容易验证这定义了一个阿贝尔群的注入同态。
φ′:HomR(N,D)→HomR(M,D)
f↦f′=f∘φ
or, put another way,
或者换句话说,
ifM→φN→0is exact,
then 0→HomR(N,D)→φ′HomR(M,D) is exact.
那么 0→HomR(N,D)→φ′HomR(M,D) 是精确的。
(Note that the associated maps on the homomorphism groups are in the reverse direction from the original maps.)
(注意,同态群上的相关映射与原始映射的方向相反。)
On the other hand,given an R -module homomorphism f from L to D it may not be possible to extend f to a map F from M to D ,i.e.,given f it may not be possible to find a map F making the following diagram commute:
另一方面,给定一个从 L 到 D 的 R -模同态 f,可能无法将 f 扩展为从 M 到 D 的映射 F,即给定 f 后,可能无法找到一个使以下图表成立的映射 F。
For example,consider the exact sequence 0→Z→ψZ→φZ/2Z→0 of Z -modules,where ψ is multiplication by 2 and φ is the natural projection. Take D=Z/2Z and let f:Z→Z/2Z be reduction modulo 2 on the first Z in the sequence. There is only one nonzero homomorphism F from the second Z in the sequence to Z/2Z (namely,reduction modulo 2),but this F does not lift the map f since F∘ψ(Z)=F(2Z)=0 ,so F∘ψ=f .
例如,考虑确切序列 0→Z→ψZ→φZ/2Z→0 的 Z -模,其中 ψ 是乘以2,φ 是自然投影。取 D=Z/2Z 并让 f:Z→Z/2Z 是序列中第一个 Z 的模2约化。序列中的第二个 Z 到 Z/2Z 只存在一个非零同态 F(即模2约化),但这个 F 不能提升映射 f,因为 F∘ψ(Z)=F(2Z)=0,所以 F∘ψ=f。
Composition with ψ induces an abelian group homomorphism ψ′ from HomR(M,D) to HomR(L,D) ,and in terms of the map ψ′ ,the homomorphism f∈HomR(L,D) can be lifted to a homomorphism from M to D if and only if f is in the image of ψ′ . The example above shows that
与 ψ 的复合诱导出一个从 HomR(M,D) 到 HomR(L,D) 的阿贝尔群同态 ψ′,并且就映射 ψ′ 而言,当且仅当 f 在 ψ′ 的像中时,同态 f∈HomR(L,D) 可以提升为从 M 到 D 的同态。上面的例子表明
if0→L→ψMis exact,
then HomR(M,D)→ψ′HomR(L,D)→0 is not necessarily exact.
那么 HomR(M,D)→ψ′HomR(L,D)→0 不一定是确切的。
We can summarize these results in the following dual version of Theorem 28:
A homomorphism f:L→D lifts to a homomorphism F:M→D if and only if f∈HomR(L,D) is in the image of ψ′ . In general ψ′:HomR(M,D)→HomR(L,D) need not be surjective; the map ψ′ is surjective if and only if every homomorphism from L to D lifts to a homomorphism from M to D ,in which case the sequence (12) can be extended to a short exact sequence.
一个同态 f:L→D 提升为同态 F:M→D 当且仅当 f∈HomR(L,D) 在 ψ′ 的像中。一般来说 ψ′:HomR(M,D)→HomR(L,D) 不一定是满射;映射 ψ′ 是满射当且仅当从 L 到 D 的每个同态都可以提升为从 M 到 D 的同态,在这种情况下序列(12)可以扩展为一个短确切序列。
The sequence (12) is exact for all R -modules D if and only if the sequence
序列 (12) 对于所有 R -模块 D 是精确的当且仅当序列
L→ψM→φN→0 is exact.
Proof: The only item remaining to be proved in the first statement is the exactness of (12) at HomR(M,D) . The proof of this statement is very similar to the proof of the corresponding result in Theorem 28 and is left as an exercise. Note also that the injectivity of ψ is not required,which proves the "if" portion of the final statement of the theorem.
Suppose now that the sequence (12) is exact for all R -modules D . We first show that φ:M→N is a surjection. Take D=N/φ(M) . If π1:N→N/φ(M) is the natural projection homomorphism,then π1∘φ(M)=0 by definition of π1 . Since π1∘φ=φ′(π1) ,this means that the element π1∈HomR(N,N/φ(M)) is mapped to 0 by φ′ . Since φ′ is assumed to be injective for all modules D ,this means π1 is the zero map,i.e., N=φ(M) and so φ is a surjection. We next show that φ∘ψ=0 ,which will imply that image ψ⊆kerφ . For this we take D=N and observe that the identity mapidN on N is contained in HomR(N,N) ,hence φ′(idN)∈HomR(M,N) . Then the exactness of (12) for D=N implies that φ′(idN)∈kerψ′ ,so ψ′(φ′(idN))=0 . Then idN∘ψ∘φ=0, i.e., ψ∘φ=0, as claimed. Finally,we show that kerφ⊆imageψ. Let D=M/ψ(L) and let π2:M→M/ψ(L) be the natural projection. Then ψ′(π2)=0 since π2(ψ(L))=0 by definition of π2 . The exactness of (12) for this D then implies that π2 is in the image of φ′ ,say π2=φ′(f) for some homomorphism f∈HomR(N,M/ψ(L)), i.e., π2=f∘φ. If m∈kerφ then π2(m)=f(φ(m))=0, which means that m∈ψ(L) since π2 is just the projection from M into the quotient M/ψ(L) . Hence kerφ⊆ image ψ ,completing the proof.
is in general not a short exact sequence since ψ′ need not be surjective,and the question of whether this sequence is exact precisely measures the extent to which homomorphisms from M to D are uniquely determined by pairs of homomorphisms from L and N to D .
通常来说,这并不是一个短正合序列,因为 ψ′ 不一定是满射,而这个问题是否精确地衡量了从 M 到 D 的同态是否由从 L 和 N 到 D 的同态对唯一确定。
The second statement in Proposition 29 shows that this sequence is exact when the original exact sequence 0→L→M→N→0 is a split exact sequence. In fact in this case the sequence 0→HomR(N,D)→φ′HomR(M,D)→ψ′HomR(L,D)→0 is also a split exact sequence of abelian groups for every R -module D . Exercise 14 shows that a converse holds: if 0→HomR(N,D)→φ′HomR(M,D)→ψ′HomR(L,D)→0 is exact for every R -module D then 0→L→ψM→φN→0 is a split short exact sequence (which then implies that if the Hom sequence is exact for every D ,then in fact it is split exact for every D ).
命题29中的第二个陈述表明,当原始的短正合序列 0→L→M→N→0 是分裂正合序列时,这个序列是正合的。实际上,在这种情况下,序列 0→HomR(N,D)→φ′HomR(M,D)→ψ′HomR(L,D)→0 对于每个 R -模 D 也是分裂正合序列。练习14表明一个逆命题成立:如果 0→HomR(N,D)→φ′HomR(M,D)→ψ′HomR(L,D)→0 对于每个 R -模 D 都是正合的,那么 0→L→ψM→φN→0 是一个分裂的短正合序列(这进而意味着如果 Hom 序列对于每个 D 是正合的,那么实际上它对于每个 D 也是分裂正合的)。
There is also a dual version of the first three parts of Proposition 30, which describes the R-modules D having the property that the sequence (21) in Theorem 23 can always be extended to a short exact sequence:
命题30的前三部分也有一个对偶版本,它描述了 R-modules D 具有这样的性质:定理 23 中的序列 (21) 总是可以扩展为一个短正合序列:
Proposition 34. Let Q be an R -module. Then the following are equivalent:
命题34。设 Q 是一个 R -模。那么以下条件是等价的:
(1) For any R -modules L,M ,and N ,if
(1)对于任何 R -模 L,M 和 N ,如果
0→L→ψM→φN→0
is a short exact sequence, then
是一个短正合序列,那么
0→HomR(N,Q)→φ′HomR(M,Q)→ψ′HomR(L,Q)→0
is also a short exact sequence.
也是一个短正合序列。
(2) For any R -modules L and M ,if 0→L→ψM is exact,then every R -module homomorphism from L into Q lifts to an R -module homomorphism of M into Q ,i.e.,given f∈HomR(L,Q) there is a lift F∈HomR(M,Q) making the following diagram commute:
(2) 对于任意的 R -模块 L 和 M ,如果 0→L→ψM 是精确的,那么从 L 到 Q 的每个 R -模块同态都可以提升为从 M 到 Q 的 R -模块同态,即给定 f∈HomR(L,Q) 存在一个提升 F∈HomR(M,Q) 使得以下图表可交换:
(3) If Q is a submodule of the R -module M then Q is a direct summand of M ,i.e., every short exact sequence 0→Q→M→N→0 splits.
(3) 如果 Q 是 R -模块 M 的子模块,那么 Q 是 M 的直和项,即每个短精确序列 0→Q→M→N→0 都可以分解。
Proof: The equivalence of (1) and (2) is part of Theorem 33. Suppose now that (2) is satisfied and let 0→Q→ψM→φN→0 be exact. Taking L=Q and f the identity map from Q to itself,it follows by (2) that there is a homomorphism F:M→Q with F∘ψ=1 ,so F is a splitting homomorphism for the sequence,which proves (3). The proof that (3) implies (2) is outlined in the exercises.
Definition. An R -module Q is called injective if it satisfies any of the equivalent conditions of Proposition 34.
定义。一个 R -模块 Q 如果满足命题34中的任何等价条件,则称为可注入的。
The third statement in Proposition 34 can be rephrased as saying that any module M into which Q injects has (an isomorphic copy of) Q as a direct summand,which explains the terminology.
命题34中的第三条陈述可以重新表述为:任何 M 模块,如果 Q 可以注入其中,则具有(一个同构副本的)Q 作为直和项,这解释了术语的使用。
If D is fixed,then given any R -module X we have an associated abelian group HomR(X,D) . Further,an R -module homomorphism α:X→Y induces an abelian group homomorphism α′:HomR(Y,D)→HomR(X,D) ,defined by α′(f)=f∘α , that “reverses” the direction of the arrow. Put another way,the map HomR(D,) is a contravariantfunctorfrom the category ofR-modulesto the category of abelian groups (cf. Appendix II). Theorem 33 shows that applying this functor to the terms in the exact sequence
如果 D 是固定的,那么对于任意的 R -模 X,我们有一个相关的阿贝尔群 HomR(X,D)。进一步地,一个 R -模同态 α:X→Y 诱导出一个阿贝尔群同态 α′:HomR(Y,D)→HomR(X,D),由 α′(f)=f∘α 定义,它“逆转”了箭头的方向。换句话说,映射 HomR(D,) 是一个 contravariantfunctorfrom the category ofR-modulesto the category of abelian groups(参见附录II)。定理33表明,将这个函子应用于精确序列中的项
0→L→ψM→φN→0
produces an exact sequence
产生一个精确序列
0→HomR(N,D)→φ′HomR(M,D)→ψ′HomR(L,D).
This is referred to by saying that HomR(_,D) is a left exact (contravariant) functor. Note that the functor HomR(_,D) and the functor HomR(D,_) considered earlier are both left exact; the former reverses the directions of the maps in the original short exact sequence, the latter maintains the directions of the maps.
By Proposition 34,the functor HomR(__,D) is exact,i.e.,always takes short exact sequences to short exact sequences (and hence exact sequences of any length to exact sequences), if and only if D is injective. We summarize this in the following proposition, which is dual to the covariant result of Corollary 32.
根据命题34,函子 HomR(__,D) 是精确的,即总是将短精确序列映射到短精确序列(因此也将任意长度的精确序列映射到精确序列),当且仅当 D 是可注入的。我们在以下命题中总结这一点,该命题是32号推论的协变结果的对偶。
Corollary 35. If D is an R -module,then the functor HomR(__,D) from the category of R -modules to the category of abelian groups is left exact. It is exact if and only if D is an injective R -module.
推论35。如果 D 是一个 R -模,那么从 R -模范畴到阿贝尔群范畴的函子 HomR(__,D) 是左精确的。当且仅当 D 是一个可注入的 R -模时,它是精确的。
We have seen that an R -module is projective if and only if it is a direct summand of a free R -module. Providing such a simple characterization of injective R -modules is not so easy. The next result gives a criterion for Q to be an injective R -module (a result due to Baer, who introduced the notion of injective modules around 1940), and using it we can give a characterization of injective modules when R=Z (or,more generally,when R is a P.I.D.). Recall that a Z -module A (i.e.,an abelian group,written additively) is said to be divisible if A=nA for all nonzero integers n . For example, both Q and Q/Z are divisible (cf. Exercises 18 and 19 in Section 2.4 and Exercise 15 in Section 3.1).
我们已经看到,一个 R -模是投射的当且仅当它是自由 R -模的直接和项。给出一个如此简单的注入 R -模的特征并不是那么容易。下一个结果给出了 Q 为注入 R -模的一个准则(Baer 的结果,他在大约1940年引入了可注入模的概念),使用它我们可以给出当 R=Z (或者更一般地,当 R 是一个P.I.D.时)注入模的特征。回顾一下,一个 Z -模 A(即,一个加法书写的阿贝尔群)被称为可除的,如果 A=nA 对于所有非零整数 n 成立。例如,Q 和 Q/Z 都是可除的(参见第2.4节的练习18和19以及第3.1节的练习15)。
Proposition 36. Let Q be an R -module.
命题36。设 Q 是一个 R -模。
(1) (Baer’s Criterion) The module Q is injective if and only if for every left ideal I of R any R -modulehomomorphism g:I→Q can be extended to an R -module homomorphism G:R→Q .
(1)(Baer准则)模 Q 是可注入的当且仅当对于 R 的每一个左理想 I ,任何 R -模同态 g:I→Q 都可以扩展为一个 R -模同态 G:R→Q 。
(2) If R is a P.I.D. then Q is injective if and only if rQ=Q for every nonzero r∈R . In particular,a Z -module is injective if and only if it is divisible. When R is a P.I.D.,quotient modules of injective R -modules are again injective.
(2)如果 R 是一个P.I.D.,那么 Q 是可注入的当且仅当对于每一个非零 r∈R 成立 rQ=Q 。特别地,一个 Z -模是可注入的当且仅当它是可除的。当 R 是一个P.I.D.时,可注入 R -模的商模仍然是可注入的。
Proof: If Q is injective and g:I→Q is an R -module homomorphism from the nonzero ideal I of R into Q ,then g can be extended to an R -module homomorphism from R into Q by Proposition 34(2) applied to the exact sequence 0→I→R ,which proves the “only if” portion of (1). Suppose conversely that every homomorphism g:I→Q can be lifted to a homomorphism G:R→Q . To show that Q is injective we must show that if 0→L→M is exact and f:L→Q is an R - module homomorphism then there is a lift F:M→Q extending f . If S is the collection (f′,L′) of lifts f′:L′→Q of f to a submodule L′ of M containing L , then the ordering (f′,L′)≤(f′′,L′′) if L′⊆L′′ and f′′=f′ on L′ partially orders S . Since S=∅ ,by Zorn’s Lemma there is a maximal element (F,M′) in S . The map F:M′→Q is a lift of f and it suffices to show that M′=M . Suppose that there is some element m∈M not contained in M′ and let I={r∈R∣rm∈M′} . It is easy to check that I is a left ideal in R ,and the map g:I→Q defined by g(x)=F(xm) is an R -module homomorphism from I to Q . By hypothesis,there is a lift G:R→Q of g . Consider the submodule M′+Rm of M ,and define the map F′:M′+Rm→Q by F′(m′+rm)=F(m′)+G(r) . If m1+r1m=m2+r2m then (r1−r2)m=m2−m1 shows that r1−r2∈I ,so that
证明:如果 Q 是单射且 g:I→Q 是从 R 的非零理想 I 到 Q 的 R -模同态,那么根据命题34(2)应用于精确序列 0→I→R ,g 可以扩展为从 R 到 Q 的 R -模同态,这证明了(1)的“仅当”部分。假设反过来,每个同态 g:I→Q 都可以提升为同态 G:R→Q 。为了证明 Q 是单射,我们必须证明如果 0→L→M 是精确的且 f:L→Q 是一个 R -模同态,那么存在一个提升 F:M→Q 来扩展 f 。如果 S 是提升 f′:L′→Q 的集合 (f′,L′) 到包含 L 的 M 的子模块 L′ ,那么在 L′ 上的排序 (f′,L′)≤(f′′,L′′) 如果 L′⊆L′′ 和 f′′=f′ 部分排序 S 。由于 S=∅ ,根据佐恩引理,在 S 中存在一个极大元素 (F,M′) 。映射 F:M′→Q 是 f 的提升,足够证明 M′=M 。假设存在某个元素 m∈M 不包含在 M′ 中,并令 I={r∈R∣rm∈M′} 。容易验证 I 是 R 中的左理想,且由 g(x)=F(xm) 定义的映射 g:I→Q 是从 I 到 Q 的 R -模同态。根据假设,存在 g 的提升 G:R→Q 。考虑 M 的子模块 M′+Rm ,并通过 F′(m′+rm)=F(m′)+G(r) 定义映射 F′:M′+Rm→Q 。如果 m1+r1m=m2+r2m ,那么 (r1−r2)m=m2−m1 显示 r1−r2∈I ,因此使得
G(r1−r2)=g(r1−r2)=F((r1−r2)m)=F(m2−m1),
and so F(m1)+G(r1)=F(m2)+G(r2) . Hence F′ is well defined and it is then immediate that F′ is an R -module homomorphism extending f to M′+Rm . This contradicts the maximality of M′ ,so that M′=M ,which completes the proof of (1).
因此 F(m1)+G(r1)=F(m2)+G(r2) 。所以 F′ 是良好定义的,并且立即可以得出 F′ 是一个 R -模同态,将 f 扩展到 M′+Rm 。这与 M′ 的极大性相矛盾,因此 M′=M ,这完成了 (1) 的证明。
To prove (2),suppose R is a P.I.D. Any nonzero ideal I of R is of the form I=(r) for some nonzero element r of R . An R -module homomorphism f:I→Q is completely determined by the image f(r)=q in Q . This homomorphism can be extended to a homomorphism F:R→Q if and only if there is an element q′ in Q with F(1)=q′ satisfying q=f(r)=F(r)=rq′ . It follows that Baer’s criterion for Q is satisfied if and only if rQ=Q ,which proves the first two statements in (2). The final statement follows since a quotient of a module Q with rQ=Q for all r=0 in R has the same property.
为了证明 (2),假设 R 是一个 P.I.D.。R 的任何非零理想 I 都可以表示为 I=(r) 的形式,其中 r 是 R 中的某个非零元素。一个 R -模同态 f:I→Q 完全由在 Q 中的像 f(r)=q 确定。当且仅当 Q 中存在一个元素 q′ 满足 F(1)=q′ 使得 q=f(r)=F(r)=rq′ 时,这个同态可以扩展为一个同态 F:R→Q 。因此,如果且仅当 rQ=Q 时,Q 满足 Baer 准则,这证明了 (2) 中的前两个陈述。由于一个模 Q 的商,对于 R 中所有 r=0 都具有 rQ=Q 的性质,最后一个陈述随之成立。
Examples
示例
(1) Since Z is not divisible, Z is not an injective Z -module. This also follows from the fact that the exact sequence 0→Z→2Z→Z/2Z→0 corresponding to multiplication by 2 does not split.
(1) 由于 Z 不可除,Z 不是一个注入的 Z -模。这也从对应的乘以 2 的精确序列 0→Z→2Z→Z/2Z→0 不分裂的事实得出。
(2) The rational numbers Q is an injective Z -module.
(2) 有理数 Q 是一个注入的 Z -模。
(3) The quotient Q/Z of the injective Z -module Q is an injective Z -module.
(3) 注入 Z -模 Q 的商 Q/Z 是一个注入的 Z -模。
(4) It is immediate that a direct sum of divisible Z -modules is again divisible,hence a direct sum of injective Z -modules is again injective. For example, Q⊕Q/Z is an injective Z -module. (See also Exercise 4).
(4) 显然,可除 Z -模的直接和仍然是可除的,因此可除 Z -模的直接和仍然是可注的。例如,Q⊕Q/Z 是一个可注 Z -模。(也见练习4)。
(5) We shall see in Chapter 12 that no nonzero finitely generated Z -module is injective.
(5) 我们将在第12章看到,没有非零有限生成的 Z -模是可注的。
(6) Suppose that the ring R is an integral domain. An R -module A is said to be a divisible R -module if rA=A for every nonzero r∈R . The proof of Proposition 36 shows that in this case an injective R -module is divisible.
(6) 假设环 R 是一个整环。一个 R -模 A 被称为可除 R -模,如果对于每一个非零 r∈R 成立 rA=A。命题36的证明表明,在这种情况下,一个可注 R -模是可除的。
(7) We shall see in Section 11.1 that if R=F is a field then every F -module is injective.
(7) 我们将在11.1节看到,如果 R=F 是一个域,那么每一个 F -模都是可注的。
(8) We shall see in Part VI that if F is any field and n∈Z+ then the ring R=Mn(F) of all n×n matrices with entries from F has the property that every R -module is injective (and also projective). We shall also see that if G is a finite group of order n and n=0 in the field F then the group ring FG also has the property that every module is injective (and also projective).
(8) 我们将在第六部分看到,如果 F 是任意域且 n∈Z+ ,那么所有 n×n 矩阵的环 R=Mn(F) ,其元素来自 F ,具有每个 R -模都是可注(并且也是可投射)的性质。我们还将看到,如果 G 是一个有限阶为 n 的群,并且 n=0 在域 F 中,那么群环 FG 也具有每个模都是可注(并且也是可投射)的性质。
Corollary 37. Every Z -module is a submodule of an injective Z -module.
推论37。每一个 Z -模都是某个可注 Z -模的子模。
Proof: Let M be a Z -module and let A be any set of Z -module generators of M . Let F=F(A) be the free Z -module on the set A . Then by Theorem 6 there is a surjective Z -module homomorphism from F to M and if K denotes the kernel of this homomorphism then K is a Z -submodule of F and we can identify M=F/K . Let Q be the free Q -module on the set A . Then Q is a direct sum of a number of copies of Q , so is a divisible,hence (by Proposition 36) injective, Z -module containing F . Then K is also a Z -submodule of Q ,so the quotient Q/K is injective,again by Proposition 36. Since M=F/K⊆Q/K ,it follows that M is contained in an injective Z -module.
证明:设 M 是一个 Z -模,设 A 是 M 的一组任意 Z -模生成元。设 F=F(A) 是在集合 A 上的自由 Z -模。根据定理6,存在从 F 到 M 的满射 Z -模同态,如果 K 表示这个同态的核,那么 K 是 F 的一个 Z -子模,我们可以识别 M=F/K。设 Q 是在集合 A 上的自由 Q -模。那么 Q 是 Q 的若干个副本的直接和,因此是可除的(由命题36),所以是包含 F 的内射 Z -模。因此 K 也是 Q 的一个 Z -子模,所以商 Q/K 是内射的,再次由命题36得出。由于 M=F/K⊆Q/K ,因此 M 包含在一个内射的 Z -模中。
Corollary 37 can be used to prove the following more general version valid for arbitrary R -modules. This theorem is the injective analogue of the results in Theorem 6 and Corollary 31 showing that every R -module is a quotient of a projective R -module.
推论37可以用来证明以下更一般的版本,对于任意的 R -模都是有效的。这个定理是定理6和推论31的内射类似物,表明每个 R -模都是某个投射 R -模的商。
Theorem 38. Let R be a ring with 1 and let M be an R -module. Then M is contained in an injective R -module.
定理38。设 R 是一个带有单位元的环,设 M 是一个 R -模。那么 M 包含在一个内射的 R -模中。
Proof: A proof is outlined in Exercises 15 to 17.
证明:证明大纲在练习15到17中概述。
It is possible to prove a sharper result than Theorem 38, namely that there is a minimal injective R -module H containing M in the sense that any injective map of M into an injective R -module Q factors through H . More precisely,if M⊆Q for an injective R -module Q then there is an injection ι:H↪Q that restricts to the identity map on M ; using ι to identify H as a subset of Q we have M⊆H⊆Q . (cf. Theorem 57.13 in Representation Theory of Finite Groups and Associative Algebras by C. Curtis and I. Reiner,John Wiley &Sons,1966). This module H is called the injective hull or injective envelope of M . The universal property of the injective hull of M with respect to inclusions of M into injective R -modules should be compared to the universal property with respect to homomorphisms of M of the free module F(A) on a set of generators A for M in Theorem 6. For example,the injective hull of Z is Q ,and the injective hull of any field is itself (cf. the exercises).
可以证明一个比定理38更强的结果,即存在一个包含 R -模 H 的最小单射模 M ,在 M 到任何 R -单射模 Q 的单射映射的意义上,它可以通过 H 实现。更准确地说,如果 M⊆Q 对于一个 R -单射模 Q ,那么存在一个单射 ι:H↪Q ,它限制在 M 上是恒等映射;使用 ι 识别 H 作为 Q 的子集,我们得到 M⊆H⊆Q。(参见C. Curtis和I. Reiner的《有限群和结合代数的表示论》中的定理57.13,John Wiley &Sons, 1966)。这个模 H 被称为 M 的单射 hull 或单射 envelope。关于 M 的单射 hull 的普遍性质,与定理6中关于生成元集合 A 的自由模 F(A) 的同态的普遍性质相比,应考虑 M 到单射 R -模的包含。例如,Z 的单射 hull 是 Q ,任何域的单射 hull 是其本身(参见练习)。
Flat Modules and D⊗R -
扁平模和 D⊗R -
We now consider the behavior of extensions 0→L→ψM→φN→0 of R -modules with respect to tensor products.
现在我们考虑 R -模的扩张 0→L→ψM→φN→0 对张量积的行为。
Suppose that D is a right R -module. For any homomorphism f:X→Y of left R -modules we obtain a homomorphism 1⊗f:D⊗RX→D⊗RY of abelian groups (Theorem 13). If in addition D is an(S,R)-bimodule (for example,when S=R is commutative and D is given the standard(R,R)-bimodule structure as in Section 4), then 1⊗f is a homomorphism of left S -modules. Put another way,
假设 D 是一个右 R -模。对于任意左 R -模的同态 f:X→Y,我们可以得到一个阿贝尔群的同态 1⊗f:D⊗RX→D⊗RY(定理13)。此外,如果 D 是一个(S,R)-双模(例如,当 S=R 是交换的并且 D 具有如第4节中给出的标准(R,R)-双模结构时),那么 1⊗f 是一个左 S -模的同态。换句话说,
D⊗R_:X→D⊗RX
is a covariant functor from the category of left R -modules to the category of abelian groups (respectively,to the category of left S -modules when D is an(S,R)-bimodule), cf. Appendix II. In a similar way,if D is a left R -module then _⊗RD is a covariant functor from the category of right R-modules to the category of abelian groups (respectively,to the category of right S -modules when D is an(R,S)-bimodule). Note that, unlike Hom, the tensor product is covariant in both variables, and we shall therefore concentrate on D⊗R ,leaving as an exercise the minor alterations necessary for _____ ⊗RD .
是从左 R -模的类别到阿贝尔群类别(相应地,当 D 是一个(S,R)-双模时,到左 S -模的类别)的协变函子,参见附录II。类似地,如果 D 是一个左 R -模,那么 _⊗RD 是从右 R-modules 的类别到阿贝尔群类别(相应地,当 D 是一个(R,S)-双模时,到右 S -模的类别)的协变函子。注意,与 Hom 不同,张量积在两个变量上都是协变的,因此我们将集中研究 D⊗R,将 ⊗RD 的必要小改动留作练习。
We have already seen examples where the map 1⊗ψ:D⊗RL→D⊗RM induced by an injective map ψ:L↪M is no longer injective (for example the injection Z↪Q of Z -modules induces the zero map from Z/2Z⊗ZZ=Z/2Z to Z/2Z⊗ZQ=0). On the other hand,suppose that φ:M→N is a surjective R -module homomorphism. The tensor product D⊗RN is generated as an abelian group by the simple tensors d⊗n for d∈D and n∈N . The surjectivity of φ implies that n=φ(m) for some m∈M ,and then 1⊗φ(d⊗m)=d⊗φ(m)=d⊗n shows that 1⊗φ is a surjective homomorphism of abelian groups from D⊗RM to D⊗RN . This proves most of the following theorem.
Theorem 39. Suppose that D is a right R -module and that L,M and N are left R -modules. If
定理39。假设 D 是一个右 R -模,且 L,M 和 N 是左 R -模。如果
0→L→ψM→φN→0is exact,
then the associated sequence of abelian groups
那么,相关的阿贝尔群序列
D⊗RL→1⊗ψD⊗RM→1⊗φD⊗RN→0 is exact. (10.13)
If D is an(S,R)-bimodule then (13) is an exact sequence of left S -modules. In particular,if S=R is a commutative ring,then (13) is an exact sequence of R -modules with respect to the standard R -module structures. The map 1⊗φ is not in general injective i.e., the sequence (13) cannot in general be extended to a short exact sequence.
如果 D 是一个 (S,R)-双边模,那么 (13) 是左 S -模的精确序列。特别是,如果 S=R 是一个交换环,那么 (13) 是关于标准 R -模结构的 R -模的精确序列。映射 1⊗φ 通常不是单射的,即序列 (13) 通常不能扩展为短精确序列。
The sequence (13) is exact for all right R -modules D if and only if
序列 (13) 对于所有右 R -模 D 是精确的,当且仅当
L→ψM→φN→0 is exact.
Proof: For the first statement it remains to prove the exactness of (13) at D⊗RM . Since φ∘ψ=0 ,we have
证明:对于第一个陈述,需要证明 (13) 在 D⊗RM 处的精确性。由于 φ∘ψ=0 ,我们有
(1⊗φ)(∑di⊗ψ(li))=∑di⊗(φ∘ψ(li))=0
and it follows that image (1⊗ψ)⊆ker(1⊗φ) . In particular,there is a natural projection π:(D⊗RM)/image(1⊗ψ)→(D⊗RM)/ker(1⊗φ)=D⊗RN.Thecomposite of the two projection homomorphisms
is the quotient of D⊗RM by ker(1⊗φ) ,so is just the map 1⊗φ . We shall show that π is an isomorphism,which will show that the kernel of 1⊗φ is just the kernel of the first projection above,i.e.,image (1⊗ψ) ,giving the exactness of (13) at D⊗RM . To see that π is an isomorphism we define an inverse map. First define π′:D×N→(D⊗RM)/image(1⊗ψ) by π′((d,n))=d⊗m for any m∈M with φ(m)=n. Note that this is well defined: any other element m′∈M mapping to n differs from m by an element in kerφ=imageψ ,i.e., m′=m+ψ(l) for some l∈L ,and d⊗ψ(l)∈image(1⊗ψ) . It is easy to check that π′ is a balanced map,so induces a homomorphism π:D×N→(D⊗RM)/ image (1⊗ψ) with π(d⊗n)=d⊗m. Then π∘π(d⊗m)=π(d⊗φ(m))=d⊗m shows that π∘π=1 . Similarly, π∘π=1 ,so that π and π are inverse isomorphisms,completing the proof that (13) is exact. Note also that the injectivity of ψ was not required for the proof.
Finally,suppose (13) is exact for every right R -module D . In general, R⊗RX≅X for any left R -module X (Example 1 following Corollary 9). Taking D=R the exactness of the sequence L→ψM→φN→0 follows.
最后,假设对于每个右 R -模 D ,(13)都是精确的。一般来说, R⊗RX≅X 对于任何左 R -模 X (例1跟随推论9)。取 D=R 序列的精确性随之而来 L→ψM→φN→0 。
By Theorem 39, the sequence
根据定理39,序列
0→D⊗RL→1⊗ψD⊗RM→1⊗φD⊗RN→0
is not in general exact since 1⊗ψ need not be injective. If 0→L→ψM→φN→0 is a split short exact sequence, however, then since tensor products commute with direct sums by Theorem 17, it follows that
The following result relating to modules D having the property that (13) can always be extended to a short exact sequence is immediate from Theorem 39:
下面这个关于具有性质(13)总能扩展为短正合序列的模 D 的结果直接来源于定理39:
Proposition 40. Let A be a right R -module. Then the following are equivalent:
命题40。设 A 是一个右 R -模。那么以下条件是等价的:
(1) For any left R -modules L,M ,and N ,if
(1)对于任何左 R -模 L,M 和 N,如果
0→L→ψM→φN→0
is a short exact sequence, then
是一个短正合序列,那么
0→A⊗RL→1⊗ψA⊗RM→1⊗φA⊗RN→0
is also a short exact sequence.
也是一个短正合序列。
(2) For any left R -modules L and M ,if 0→L→ψM is an exact sequence of left R -modules (i.e., ψ:L→M is injective) then 0→A⊗RL→1⊗ψA⊗RM is an exact sequence of abelian groups (i.e., 1⊗ψ:A⊗RL→A⊗RM is injective).
(2)对于任何左 R -模 L 和 M,如果 0→L→ψM 是左 R -模的精确序列(即 ψ:L→M 是单射的),那么 0→A⊗RL→1⊗ψA⊗RM 是阿贝尔群的精确序列(即 1⊗ψ:A⊗RL→A⊗RM 是单射的)。
Definition. A right R -module A is called flat if it satisfies either of the two equivalent conditions of Proposition 40.
定义。一个右 R -模 A 如果满足命题40中的两个等价条件之一,则被称为平坦模。
For a fixed right R -module D ,the first part of Theorem 39 is referred to by saying that the functor D⊗R is right exact.
对于一个固定的右 R -模 D,定理39的第一部分指的是说函子 D⊗R 是右正合的。
Corollary 41. If D is a right R -module,then the functor D⊗R _____from the category of left R -modules to the category of abelian groups is right exact. If D is an(S,R)- bimodule (for example when S=R is commutative and D is given the standard R -module structure),then D⊗R _____is a right exact functor from the category of left R -modules to the category of left S -modules. The functor is exact if and only if D is a flat R -module.
推论 41. 如果 D 是一个右 R -模,那么从左 R -模范畴到阿贝尔群范畴的函子 D⊗R _____ 是右正合的。如果 D 是一个 (S,R) 双模(例如当 S=R 是交换的并且 D 具有标准的 R -模结构时),那么 D⊗R _____ 是从左 R -模范畴到左 S -模范畴的右正合函子。当且仅当 D 是一个平坦 R -模时,该函子是正合的。
We have already seen some flat modules:
我们已经看到了一些平坦模:
Corollary 42. Free modules are flat; more generally, projective modules are flat.
推论 42. 自由模是平坦的;更一般地,投射模也是平坦的。
Proof: To show that the free R -module F is flat it suffices to show that for any injective map ψ:L→M of R -modules L and M the induced map 1⊗ψ:F⊗RL→F⊗RM is also injective. Suppose first that F≅Rn is a finitely generated free R - module. In this case F⊗RL=Rn⊗RL≅Ln since R⊗RL≅L and tensor products commute with direct sums. Similarly F⊗RM≅Mn and under these isomorphisms the map 1⊗ψ:F⊗RL→F⊗RM is just the natural map of Ln to Mn induced by the inclusion ψ in each component. In particular, 1⊗ψ is injective and it follows that any finitely generated free module is flat. Suppose now that F is an arbitrary free module and that the element ∑fi⊗li∈F⊗RL is mapped to 0 by 1⊗ψ . This means that the element ∑(fi,ψ(li)) can be written as a sum of generators as in equation (6) in the previous section in the free group on F×M . Since this sum of elements is finite, all of the first coordinates of the resulting equation lie in some finitely generated free submodule F′ of F . Then this equation implies that ∑fi⊗li∈F′⊗RL is mapped to 0 in F′⊗RM . Since F′ is a finitely generated free module,the injectivity we proved above shows that ∑fi⊗li is 0 in F′⊗RL and so also in F⊗RL . It follows that 1⊗ψ is injective and hence that F is flat.
证明:要证明自由的 R -模 F 是平坦的,只需证明对于任何 R -模 L 和 M 之间的单射映射 ψ:L→M,所诱导的映射 1⊗ψ:F⊗RL→F⊗RM 也是单射的。首先假设 F≅Rn 是一个有限生成的自由 R -模。在这种情况下 F⊗RL=Rn⊗RL≅Ln,由于 R⊗RL≅L 且张量积与直和交换。类似地 F⊗RM≅Mn,在这些同构下,映射 1⊗ψ:F⊗RL→F⊗RM 只是从 Ln 到 Mn 的自然映射,由每个分量中的包含 ψ 诱导。特别是,1⊗ψ 是单射的,因此任何有限生成的自由模都是平坦的。现在假设 F 是一个任意的自由模,且元素 ∑fi⊗li∈F⊗RL 通过 1⊗ψ 映射到 0。这意味着元素 ∑(fi,ψ(li)) 可以写成如上一节方程(6)中的生成元的和,在 F×M 的自由群上。由于这个元素的和是有限的,所得方程的所有第一个坐标都位于 F 的某个有限生成的自由子模 F′ 中。那么这个方程意味着 ∑fi⊗li∈F′⊗RL 在 F′⊗RM 中映射到 0。由于 F′ 是一个有限生成的自由模,我们上面证明的单射性表明 ∑fi⊗li 在 F′⊗RL 中是 0,因此在 F⊗RL 中也是 0。因此 1⊗ψ 是单射的,从而 F 是平坦的。
Suppose now that P is a projective module. Then P is a direct summand of a free module F (Proposition 30),say F=P⊕P′ . If ψ:L→M is injective then 1⊗ψ:F⊗RL→F⊗RM is also injective by what we have already shown. Since F=P⊕P′ and tensor products commute with direct sums,this shows that
假设现在 P 是一个射影模。那么 P 是自由模 F 的直和项(命题30),比如说 F=P⊕P′。如果 ψ:L→M 是内射的,那么根据我们已经证明的,1⊗ψ:F⊗RL→F⊗RM 也是内射的。由于 F=P⊕P′ 和张量积与直和交换,这表明
1⊗ψ:(P⊗RL)⊕(P′⊗RL)→(P⊗RM)⊕(P′⊗RM)
is injective. Hence 1⊗ψ:P⊗RL→P⊗RM is injective,proving that P is flat.
是内射的。因此 1⊗ψ:P⊗RL→P⊗RM 是内射的,证明了 P 是平坦的。
Examples
示例
(1) Since Z is a projective Z -module it is flat. The example before Theorem 39 shows that Z/2Z not a flat Z -module.
(1) 由于 Z 是一个射影 Z -模,它是平坦的。定理39之前的例子表明 Z/2Z 不是平坦的 Z -模。
(2) The Z -module Q is a flat Z -module,as follows. Suppose ψ:L→M is an injective map of Z -modules. Every element of Q⊗ZL can be written in the form (1/d)⊗l for some nonzero integer d and some l∈L (Exercise 7 in Section 4). If (1/d)⊗l is in the kernel of 1⊗ψ then (1/d)⊗ψ(l) is0in Q⊗ZM . By Exercise 8 in Section 4 this means cψ(l)=0 in M for some nonzero integer c . Then ψ(c⋅l)=0 ,and the injectivity of ψ implies c⋅l=0 in L . But this implies that (1/d)⊗l=(1/cd)⊗(c⋅l)=0 in L , which shows that 1⊗ψ is injective.
(2) Z -模 Q 是一个平坦 Z -模,如下所示。假设 ψ:L→M 是一个 Z -模的内射映射。Q⊗ZL 的每个元素都可以写成 (1/d)⊗l 的形式,对于某些非零整数 d 和某些 l∈L(第4节的练习7)。如果 (1/d)⊗l 在 1⊗ψ 的核中,那么 (1/d)⊗ψ(l) 在 Q⊗ZM 中为0。根据第4节的练习8,这意味着 cψ(l)=0 在 M 中对于某些非零整数 c。那么 ψ(c⋅l)=0,并且 ψ 的内射性意味着 c⋅l=0 在 L 中。但这意味着 (1/d)⊗l=(1/cd)⊗(c⋅l)=0 在 L 中,这表明 1⊗ψ 是内射的。
(3) The Z -module Q/Z is injective (by Proposition 36),but is not flat: the injective map ψ(z)=2z from Z to Z does not remain injective after tensoring with Q/Z(1⊗ψ:Q/Z⊗ZZ→Q/Z⊗Z has the nonzero element (21+Z)⊗1 in its kernel - identifying Q/Z=Q/Z⊗ZZ this is the statement that multiplication by 2 has the element 1/2 in its kernel).
(3) Z -模 Q/Z 是可注入的(由命题36得出),但不是平坦的:从 Z 到 Z 的可注入映射 ψ(z)=2z 在与 Q/Z 张量积后不再保持可注入性 (1⊗ψ:Q/Z⊗ZZ→Q/Z⊗Z 在其核中具有非零元素 (21+Z)⊗1 - 识别 Q/Z=Q/Z⊗ZZ 这意味着乘以2在核中有元素 1/2)。
(4) The direct sum of flat modules is flat (Exercise 5). In particular, Q⊕Z is flat. This module is neither projective nor injective (since Q is not projective by Exercise 8 and Z is not injective by Proposition 36 (cf. Exercises 3 and 4).
We close this section with an important relation between Hom and tensor products:
我们以一个Hom和张量积之间的重要关系结束这一节:
Theorem 43. (Adjoint Associativity) Let R and S be rings,let A be a right R -module,let B be an(R,S)-bimodule and let C be a right S -module. Then there is an isomorphism of abelian groups:
定理43.(伴随结合律)设 R 和 S 是环,A 是一个右 R -模,B 是一个(R,S)-双边模,C 是一个右 S -模。那么存在阿贝尔群的同构:
HomS(A⊗RB,C)≅HomR(A,HomS(B,C))
(the homomorphism groups are right module homomorphisms-note that HomS(B,C) has the structure of a right R -module,cf. the exercises). If R=S is commutative this is an isomorphism of R -modules with the standard R -module structures.
(同态群是右模同态 - 注意 HomS(B,C) 具有右 R -模的结构,参见练习)。如果 R=S 是交换的,这是一个 R -模的同构,具有标准的 R -模结构。
Proof: Suppose φ:A⊗RB→C is a homomorphism. For any fixed a∈A define the map Φ(a) from B to C by Φ(a)(b)=φ(a⊗b) . It is easy to check that Φ(a) is a homomorphism of right S -modules and that the map Φ from A to HomS(B,C) given by mapping a to Φ(a) is a homomorphism of right R -modules. Then f(φ)=Φ defines a group homomorphism from HomS(A⊗RB,C) to HomR(A,HomS(B,C)) . Conversely,suppose Φ:A→HomS(B,C) is a homomorphism. The map from A×B to C defined by mapping(a,b)to Φ(a)(c) is an R -balanced map,so induces a homomorphism φ from A⊗RB to C . Then g(Φ)=φ defines a group homomorphism inverse to f and gives the isomorphism in the theorem.
证明:假设 φ:A⊗RB→C 是一个同态。对于任意固定的 a∈A ,定义从 B 到 C 的映射 Φ(a) 通过 Φ(a)(b)=φ(a⊗b) 。容易验证 Φ(a) 是一个右 S -模的同态,且由将 a 映射到 Φ(a) 的映射 Φ 从 A 到 HomS(B,C) 是一个右 R -模的同态。那么 f(φ)=Φ 定义了一个从 HomS(A⊗RB,C) 到 HomR(A,HomS(B,C)) 的群同态。反之,假设 Φ:A→HomS(B,C) 是一个同态。由将 (a,b) 映射到 Φ(a)(c) 定义的从 A×B 到 C 的映射是一个 R -平衡映射,因此诱导出一个从 A⊗RB 到 C 的同态 φ 。那么 g(Φ)=φ 定义了一个与 f 逆的群同态,并给出了定理中的同构。
As a first application of Theorem 43 we give an alternate proof of the first result in Theorem 39 that the tensor product is right exact in the case where S=R is a commutative ring. If 0→L→M→N→0 is exact,then by Theorem 33 the sequence
is exact for all D and all E . By adjoint associativity,this means the sequence
对于所有 D 和所有 E 是准确的。由于伴随结合律,这意味着序列
0→HomR(D⊗RN,E)→HomR(D⊗RM,E)→HomR(D⊗RL,E)
is exact for any D and all E . Then,by the second part of Theorem 33,it follows that the sequence
对于任意的 D 和所有 E 是准确的。接着,根据定理 33 的第二部分,可以得出序列
D⊗RL→D⊗RM→D⊗RN→0
is exact for all D ,which is the right exactness of the tensor product.
对于所有 D 是准确的,这就是张量积在右边的准确性。
As a second application of Theorem 43 we prove that the tensor product of two projective modules over a commutative ring R is again projective (see also Exercise 9 for a more direct proof).
作为定理43的第二个应用,我们证明了两个在交换环上的投影模的张量积 R 再次是投影的(也参见练习9以获得更直接的证明)。
Corollary 44. If R is commutative then the tensor product of two projective R -modules is projective.
推论44。如果 R 是交换的,那么两个投影 R -模的张量积是投影的。
Proof: Let P1 and P2 be projective modules. Then by Corollary 32, HomR(P2,_) is an exact functor from the category of R -modules to the category of R -modules. Then the composition HomR(P1,HomR(P2,__)) is an exact functor by the same corollary. By Theorem 43 this means that HomR(P1⊗RP2,__) is an exact functor on R -modules. It follows again from Corollary 32 that P1⊗RP2 is projective.
证明:设 P1 和 P2 是投影模。那么根据推论32,HomR(P2,_) 是从 R -模范畴到 R -模范畴的精确函子。因此,复合 HomR(P1,HomR(P2,__)) 也是由同一推论得出的精确函子。根据定理43,这意味着 HomR(P1⊗RP2,__) 是在 R -模上的精确函子。再次根据推论32,得出 P1⊗RP2 是投影的。
Summary
总结
Each of the functors HomR(A,_),HomR(_,A) ,and A⊗R _____,map left R -modules to abelian groups; the functor _⊗RA maps right R -modules to abelian groups. When R is commutative all four functors map R -modules to R -modules.
(1) Let A be a left R -module. The functor HomR(A,_) is covariant and left exact; the module A is projective if and only if HomR(A,_) is exact (i.e.,is also right exact).
(2) Let A be a left R -module. The functor HomR(_,A) is contravariant and left exact; the module A is injective if and only if HomR(_,A) is exact.
(2) 设 A 是一个左 R -模。函子 HomR(_,A) 是反变和左精确的;模块 A 是可内射的当且仅当 HomR(_,A) 是精确的。
(3) Let A be a right R -module. The functor A⊗R is covariant and right exact; the module A is flat if and only if A⊗R _____is exact (i.e.,is also left exact).
(3) 设 A 是一个右 R -模。函子 A⊗R 是协变和右精确的;模块 A 是平坦的当且仅当 A⊗R _____是精确的(即,也是左精确的)。
(4) Let A be a left R -module. The functor _⊗RA is covariant and right exact; the module A is flat if and only if _⊗RA is exact.
(4) 设 A 是一个左 R -模。函子 _⊗RA 是协变和右精确的;模块 A 是平坦的当且仅当 _⊗RA 是精确的。
(5) Projective modules are flat. The Z -module Q/Z is injective but not flat. The Z -module Z⊕Q is flat but neither projective nor injective.
(5) 投影模是平坦的。 Z -模 Q/Z 是可内射的但不是平坦的。 Z -模 Z⊕Q 是平坦的但既不投影也不可内射。
EXERCISES
练习题
Let R be a ring with 1 . 1. Suppose that
设 R 是一个带有单位元的环。1. 假设
is a commutative diagram of groups and that the rows are exact. Prove that
是一个群交换图,且行是精确的。证明
(a) if φ and α are surjective,and β is injective then γ is injective. [If c∈kerγ ,show there is a b∈B with φ(b)=c . Show that φ′(β(b))=0 and deduce that β(b)=ψ′(a′) for some a′∈A′ . Show there is an a∈A with α(a)=a′ and that β(ψ(a))=β(b) . Conclude that b=ψ(a) and hence c=φ(b)=0 .]
(b) if ψ′,α ,and γ are injective,then β is injective,
(b) 如果 ψ′,α 和 γ 是单射,那么 β 是单射,
(c) if φ,α ,and γ are surjective,then β is surjective,
(c) 如果 φ,α 和 γ 是满射,那么 β 是满射,
(d) if β is injective, α and γ are surjective,then γ is injective,
(d) 如果 β 是单射, α 和 γ 是满射,那么 γ 是单射,
(e) if β is surjective, γ and ψ′ are injective,then α is surjective.
(e) 如果 β 是满射, γ 和 ψ′ 是单射,那么 α 是满射。
2. Suppose that
2. 假设
is a commutative diagram of groups, and that the rows are exact. Prove that
是一个群交换图,且行是精确的。证明
(a) if α is surjective,and β,δ are injective,then γ is injective.
(a) 如果 α 是满射,且 β,δ 是单射,那么 γ 是单射。
(b) if δ is injective,and α,γ are surjective,then β is surjective.
(b) 如果 δ 是单射,且 α,γ 是满射,那么 β 是满射。
Let P1 and P2 be R -modules. Prove that P1⊕P2 is a projective R -module if and only if both P1 and P2 are projective.
设 P1 和 P2 是 R -模。证明 P1⊕P2 是一个投射 R -模当且仅当 P1 和 P2 都是投射的。
Let Q1 and Q2 be R -modules. Prove that Q1⊕Q2 is an injective R -module if and only if both Q1 and Q2 are injective.
设 Q1 和 Q2 是 R -模。证明 Q1⊕Q2 是一个可注入 R -模当且仅当 Q1 和 Q2 都是不可注入的。
Let A1 and A2 be R -modules. Prove that A1⊕A2 is a flat R -module if and only if both A1 and A2 are flat. More generally,prove that an arbitrary direct sum ∑Ai of R -modules is flat if and only if each Ai is flat. [Use the fact that tensor product commutes with arbitrary direct sums.]
设 A1 和 A2 是 R -模。证明 A1⊕A2 是一个平坦 R -模当且仅当 A1 和 A2 都是平坦的。更一般地,证明任意直和 ∑Ai 的 R -模是平坦的当且仅当每个 Ai 都是平坦的。[使用张量积与任意直和交换的事实。]
Prove that the following are equivalent for a ring R :
证明对于一个环 R 以下条件是等价的:
(i) Every R -module is projective.
(i) 每个 R -模都是投射的。
(ii) Every R -module is injective.
(ii) 每个 R -模都是可注入的。
Let A be a nonzero finite abelian group.
设 A 是一个非零有限阿贝尔群。
(a) Prove that A is not a projective Z -module.
(a) 证明 A 不是一个投射 Z -模。
(b) Prove that A is not an injective Z -module.
(b) 证明 A 不是一个可注入 Z -模。
Let Q be a nonzero divisible Z -module. Prove that Q is not a projective Z -module. Deduce that the rational numbers Q is not a projective Z -module. [Show first that if F is any free module then ∩n=1∞nF=0 (use a basis of F to prove this). Now suppose to the contrary that Q is projective and derive a contradiction from Proposition 30(4).]
设 Q 是一个非零的可除 Z -模。证明 Q 不是一个投射 Z -模。推导出有理数 Q 不是一个投射 Z -模。(首先证明如果 F 是任意自由模,那么 ∩n=1∞nF=0(使用 F 的基来证明这一点)。现在假设 Q 是投射的,并从命题 30(4) 推导出矛盾。]
Assume R is commutative with 1 .
假设 R 是带有单位元 1 的交换环。
(a) Prove that the tensor product of two free R -modules is free. [Use the fact that tensor products commute with direct sums.]
(a) 证明两个自由 R -模的张量积是自由的。[使用张量积与直和可交换的事实。]
(b) Use (a) to prove that the tensor product of two projective R -modules is projective.
(b) 利用 (a) 证明两个投射 R -模的张量积是投射的。
Let R and S be rings with 1 and let M and N be left R -modules. Assume also that M is an(R,S)-bimodule.
设 R 和 S 是带有单位元的环,并且设 M 和 N 是左 R -模。还假设 M 是一个 (R,S)-双模。
(a) For s∈S and for φ∈HomR(M,N) define (sφ):M→N by (sφ)(m)=φ(ms) . Prove that sφ is a homomorphism of left R -modules,and that this action of S on HomR(M,N) makes it into a left S -module.
(a) 对于 s∈S 和 φ∈HomR(M,N),通过 (sφ)(m)=φ(ms) 定义 (sφ):M→N。证明 sφ 是左 R -模的同态,并且 S 对 HomR(M,N) 的这种作用使其成为一个左 S -模。
(b) Let S=R and let M=R (considered as an(R,R)-bimodule by left and right ring multiplication on itself). For each n∈N define φn:R→N by φn(r)=rn , i.e., φn is the unique R -module homomorphism mapping 1R to n . Show that φn∈HomR(R,N) . Use part (a) to show that the map n↦φn is an isomorphism of left R -modules: N≅HomR(R,N) .
(c) Deduce that if N is a free (respectively,projective,injective,fiat) left R -module,then HomR(R,N) is also a free (respectively,projective,injective,flat) left R -module.
(c) 推导出如果 N 是一个自由的(分别地,投射的、内射的、平坦的)左 R -模,那么 HomR(R,N) 也是一个自由的(分别地,投射的、内射的、平坦的)左 R -模。
Let R and S be rings with 1 and let M and N be left R -modules. Assume also that N is an (R,S)-bimodule.
设 R 和 S 是带有单位元的环,并且设 M 和 N 是左 R -模。还假设 N 是一个 (R,S)-双模。
(a) For s∈S and for φ∈HomR(M,N) define (φs):M→N by (φs)(m)=φ(m)s . Prove that φs is a homomorphism of left R -modules,and that this action of S on HomR(M,N) makes it into a right S -module. Deduce that HomR(M,R) is a right R -module,for any R -module M -called the dual module to M. . .
(a) 对于 s∈S 和对于 φ∈HomR(M,N),定义 (φs):M→N 为 (φs)(m)=φ(m)s。证明 φs 是左 R -模的同态,并且这个 S 对 HomR(M,N) 的作用使其成为一个右 S -模。推导出 HomR(M,R) 是一个右 R -模,对于任何 R -模 M -称为 M. 的对偶模。
(b) Let N=R be considered as an(R,R)-bimodule as usual. Under the action defined in part (a) show that the map r↦φr is an isomorphism of right R -modules: HomR(R,R)≅R ,where φr is the homomorphism that maps 1R to r . Deduce that if M is a finitely generated free left R -module,then HomR(M,R) is a free right R -module of the same rank. (cf. also Exercise 13.)
(b) 将 N=R 视为一个 (R,R)-双模,如通常情况。在部分 (a) 定义的作用下,证明映射 r↦φr 是一个右 R -模的同构:HomR(R,R)≅R,其中 φr 是同态,将 1R 映射到 r。推导出如果 M 是一个有限生成的自由左 R -模,那么 HomR(M,R) 是一个同阶的自由右 R -模。(参见练习 13。)
(c) Show that if M is a finitely generated projective R -module then its dual module HomR(M,R) is also projective.
(c) 证明如果 M 是一个有限生成的投射 R -模,那么它的对偶模 HomR(M,R) 也是投射的。
Let A be an R -module,let I be any nonempty index set and for each i∈I let Bi be an R -module. Prove the following isomorphisms of abelian groups; when R is commutative prove also that these are R -module isomorphisms. (Arbitrary direct sums and direct products of modules are introduced in Exercise 20 of Section 3.)
设 A 是一个 R -模,I 是任意非空指标集,对于每个 i∈I,设 Bi 是一个 R -模。证明以下阿贝尔群的同构;当 R 是交换的时候,也证明这些是 R -模的同构。(模块的任意直和与直积在第3节的练习20中引入。)
(a) HomR(⨁i∈IBi,A)≅i∈I∏HomR(Bi,A)
(a) HomR(⨁i∈IBi,A)≅i∈I∏HomR(Bi,A)
(b) HomR(A,i∈I∏Bi)≅i∈I∏HomR(A,Bi) .
(b) HomR(A,i∈I∏Bi)≅i∈I∏HomR(A,Bi)。
(a) Show that the dual of the free Z -module with countable basis is not free. [Use the preceding exercise and Exercise 24, Section 3.] (See also Exercise 5 in Section 11.3.)
(a) 证明具有可数基的自由 Z -模的对偶不是自由的。[使用前一个练习和第3节的练习24。](也参见第11.3节的练习5。)
(b) Show that the dual of the free Z -module with countable basis is also not projective. [You may use the fact that any submodule of a free Z -module is free.]
(b) 证明具有可数基的自由 Z -模的对偶也不是投射的。[你可以使用这样一个事实:任何自由 Z -模的子模都是自由的。]
Let 0→L→ψM→φN→0 be a sequence of R -modules.
设 0→L→ψM→φN→0 是一个 R -模的序列。
(a) Prove that the associated sequence
0→HomR(D,L)→ψ′HomR(D,M)→φ′HomR(D,N)→0
is a short exact sequence of abelian groups for all R -modules D if and only if the original sequence is a split short exact sequence. [To show the sequence splits, take D=N and show the lift of the identity map in HomR(N,N) to HomR(N,M) is a splitting homomorphism for φ .]
(b) Prove that the associated sequence
0→HomR(N,D)→φ′HomR(M,D)→ψ′HomR(L,D)→0
is a short exact sequence of abelian groups for all R -modules D if and only if the original sequence is a split short exact sequence.
Let M be a left R -module where R is a ring with 1 .
(a) Show that HomZ(R,M) is a left R -module under the action (rφ)(r′)=φ(r′r) (see Exercise 10).
(b) Suppose that 0→A→ψB is an exact sequence of R -modules. Prove that if every homomorphism f from A to M lifts to a homomorphism F from B to M with f=F∘ψ,theneveryhomomorphismf′fromAtoHomZ(R,M)liftstoahomomorphismF′fromBtoHomZ(R,M) with f′=F′∘ψ. [Given f′, show that f(a)=f′(a)(1R) defines a homomorphism of A to M . If F is the associated lift of f to B ,show that F′(b)(r)=F(rb) defines a homomorphism from B to HomZ(R,M) that lifts f′ .]
(c) Prove that if Q is an injective R -module then HomZ(R,Q) is also an injective R - module.
This exercise proves Theorem 38 that every left R -module M is contained in an injective left R -module.
(a) Show that M is contained in an injective Z -module Q . [ M is a Z -module-use Corollary 37.]
(b) Show that HomR(R,M)⊆HomZ(R,M)⊆HomZ(R,Q) .
(c) Use the R -module isomorphism M≅HomR(R,M) (Exercise 10) and the previous exercise to conclude that M is contained in an injective module.
This exercise completes the proof of Proposition 34. Suppose that Q is an R -module with the property that every short exact sequence 0→Q→M1→N→0 splits and suppose that the sequence 0→L→ψM is exact. Prove that every R -module homomorphism f from L to Q can be lifted to an R -module homomorphism F from M to Q with f=F∘ψ . [By the previous exercise, Q is contained in an injective R -module. Use the splitting property together with Exercise 4 (noting that Exercise 4 can be proved using (2) in Proposition 34 as the definition of an injective module).]
Prove that the injective hull of the Z -module Z is Q . [Let H be the injective hull of Z and argue that Q contains an isomorphic copy of H . Use the divisibility of H to show 1/n∈H for all nonzero integers n ,and deduce that H=Q .]
If F is a field,prove that the injective hull of F is F .
Prove that the polynomial ring R[x] in the indeterminate x over the commutative ring R is a flat R -module.
Let R and S be rings with 1 and suppose M is a right R -module,and N is an(R,S)- bimodule. If M is flat over R and N is flat as an S -module prove that M⊗RN is flat as a right S -module.
Suppose that R is a commutative ring and that M and N are flat R -modules. Prove that M⊗RN is a flat R -module. [Use the previous exercise.]
假设 R 是一个交换环,并且 M 和 N 是平坦的 R -模。证明 M⊗RN 是一个平坦的 R -模。 [使用前一个练习。]
Prove that the (right) module M⊗RS obtained by changing the base from the ring R to the ring S (by some homomorphism f:R→S with f(1R)=1S ,cf. Example 6 following Corollary 12 in Section 4) of the flat (right) R -module M is a flat S -module.
证明通过将基从环 R 变换到环 S(通过某个同态 f:R→S 使得 f(1R)=1S ,参见第4节中例6后的推论12)得到的(右)模 M⊗RS ,其中 M 是平坦的(右)R -模,是一个平坦的 S -模。
Prove that A is a flat R -module if and only if for any left R -modules L and M where L is finitely generated,then ψ:L→M injective implies that also 1⊗ψ:A⊗RL→A⊗RM is injective. [Use the techniques in the proof of Corollary 42.]
证明 A 是一个平坦的 R -模当且仅当对于任何左 R -模 L 和 M ,其中 L 是有限生成的,如果 ψ:L→M 内射则 1⊗ψ:A⊗RL→A⊗RM 也是内射。 [使用推论42证明中的技术。]
(A Flatness Criterion) Parts (a)-(c) of this exercise prove that A is a flat R -module if and only if for every finitely generated ideal I of R ,the map from A⊗RI→A⊗RR≅A induced by the inclusion I⊆R is again injective (or,equivalently, A⊗RI≅AI⊆A ).
(平坦性准则)本练习的(a)-(c)部分证明了如果对于每个 R 的有限生成理想 I ,由包含 I⊆R 引发的映射 A⊗RI→A⊗RR≅A 再次是内射的(或者等价地 A⊗RI≅AI⊆A ),那么 A 是一个平坦的 R -模。
(a) Prove that if A is flat then A⊗RI→A⊗RR is injective.
(a) 证明如果 A 是平坦的,那么 A⊗RI→A⊗RR 是内射的。
(b) If A⊗RI→A⊗RR is injective for every finitely generated ideal I ,prove that A⊗RI→A⊗RR is injective for every ideal I . Show that if K is any submodule of a finitely generated free module F then A⊗RK→A⊗RF is injective. Show that the same is true for any free module F . [Cf. the proof of Corollary 42.]
(b) 如果 A⊗RI→A⊗RR 对每个有限生成理想 I 都是单射,证明 A⊗RI→A⊗RR 对每个理想 I 也是单射。证明如果 K 是有限生成自由模 F 的任意子模,那么 A⊗RK→A⊗RF 是单射。证明对于任意自由模 F 也是如此。 [参见命题42的证明。]
(c) Under the assumption in (b),suppose L and M are R -modules and L→ψM is injective. Prove that A⊗RL→1⊗ψA⊗RM is injective and conclude that A is flat. [Write M as a quotient of the free module F ,giving a short exact sequence
(c) 在 (b) 的假设下,假设 L 和 M 是 R -模且 L→ψM 是单射。证明 A⊗RL→1⊗ψA⊗RM 是单射,并得出 A 是平坦的。 [将 M 写作自由模 F 的商模,给出一个短正合序列]
0→K→F→fM→0
Show that if J=f−1(ψ(L)) and ι:J→F is the natural injection,then the diagram
证明如果 J=f−1(ψ(L)) 和 ι:J→F 是自然单射,那么该图
is commutative with exact rows. Show that the induced diagram A⊗RK→A⊗RF→A⊗RM→0
是交换的,且行是正合的。证明诱导的图 A⊗RK→A⊗RF→A⊗RM→0
is commutative with exact rows. Use (b) to show that 1⊗ι is injective,then use Exercise 1 to conclude that 1⊗ψ is injective.]
是交换的,且行是正合的。使用 (b) 证明 1⊗ι 是单射,然后使用练习1得出 1⊗ψ 是单射。]
(d) ( A Flatness Criterion for quotients) Suppose A=F/K where F is flat (e.g.,if F is free) and K is an R -submodule of F . Prove that A is flat if and only if FI∩K=KI for every finitely generated ideal I of R. [Use (a) to prove F⊗RI≅FI and observe the image of K⊗RI is KI ; tensor the exact sequence 0→K→F→A→0 with I to prove that A⊗RI≅FI/KI ,and apply the flatness criterion.]
(d) (商模的平坦性准则) 假设 A 其中 F 是平坦的(例如,如果 F 是自由的)且 K 是 R -子模 F 。证明 A 是平坦的当且仅当 FI∩K=KI 对每个 R. 的有限生成理想 I 成立 [使用 (a) 证明 F⊗RI≅FI 并观察 K⊗RI 的像为 KI ;将正合序列 0→K→F→A→0 张量 I 以证明 A⊗RI≅FI/KI ,并应用平坦性准则。]
Suppose R is a P.I.D. This exercise proves that A is a flat R -module if and only if A is torsion free R -module (i.e.,if a∈A is nonzero and r∈R ,then ra=0 implies r=0 ).
假设 R 是一个P.I.D.。这个练习证明了 A 是一个平坦的 R -模当且仅当 A 是一个无扭的 R -模(即,如果 a∈A 是非零的且 r∈R ,那么 ra=0 蕴含 r=0 )。
(a) Suppose that A is flat and for fixed r∈R consider the map ψr:R→R defined by multiplication by r:ψr(x)=rx . If r is nonzero show that ψr is an injection. Conclude from the flatness of A that the map from A to A defined by mapping a to ra is injective and that A is torsion free.
(a) 假设 A 是平坦的,对于固定的 r∈R ,考虑由乘以 r:ψr(x)=rx 定义的映射 ψr:R→R。如果 r 是非零的,证明 ψr 是单射。从 A 的平坦性得出,由将 a 映射到 ra 定义的从 A 到 A 的映射是单射,且 A 是无扭的。
(b) Suppose that A is torsion free. If I is a nonzero ideal of R ,then I=rR for some nonzero r∈R . Show that the map ψr in (a) induces an isomorphism R≅I of
(b) 假设 A 是无扭的。如果 I 是 R 的一个非零理想,那么对于某个非零的 r∈R ,有 I=rR。证明(a)中的映射 ψr 引导出一个 A -模的同构 R≅I,并且 R 与包含映射 I=rR 的复合是乘以 r∈R。证明复合 ψr 对应于在识别 下的映射 R≅I,并且由于 是无扭的,这个复合是单射。证明 是同构,并推断 是单射。使用前一个练习来得出 是平坦的结论。
R -modules and that the composite R→ψI→ιR of ψr with the inclusion ι:I⊆R is multiplication by r . Prove that the composite A⊗RR→∪⊗ψrA⊗RI→1⊗ιA⊗RR corresponds to the map a↦ra under the identification A⊗RR=A and that this composite is injective since A is torsion free. Show that 1⊗ψr is an isomorphism and deduce that 1⊗ι is injective. Use the previous exercise to conclude that A is flat.
R -模和 R→ψI→ιR 是 ψr -模。
Let M,A and B be R -modules.
设 M,A 和 B 是 R -模。
(a) Suppose f:A→M and g:B→M are R -module homomorphisms. Prove that X={(a,b)∣a∈A,b∈B with f(a)=g(b)} is an R -submodule of the direct sum A⊕B (called the pullback or fiber product of f and g ) and that there is a commutative diagram
(a) 假设 f:A→M 和 g:B→M 是 R -模同态。证明 X={(a,b)∣a∈A,b∈B 与 f(a)=g(b)} 一起构成 R -子模,该子模是直和 A⊕B(称为 f 和 g 的拉回或纤维积)的一个子模,并且存在一个交换图
where π1 and π2 are the natural projections onto the first and second components.
其中 π1 和 π2 是到第一和第二分量的自然投影。
(b) Suppose f′:M→A and g′:M→B are R -module homomorphisms. Prove that the quotient Y of A⊕B by {(f′(m),−g′(m))∣m∈M} is an R -module (called the pushout or fiber sum of f′ and g′ ) and that there is a commutative diagram
(b) 假设 f′:M→A 和 g′:M→B 是 R -模同态。证明 A⊕B 被 {(f′(m),−g′(m))∣m∈M} 的商 Y 是一个 R -模(称为 f′ 和 g′ 的推出或纤维和),并且存在一个交换图
where π1′ and π2′ are the natural maps to the quotient induced by the maps into the first and second components.
其中 π1′ 和 π2′ 是由到第一和第二分量的映射诱导出的到商的天然映射。
(a) (Schanuel’s Lemma) If 0→K→P→φM→0 and 0→K′→P′→φ′M→0 are exact sequences of R -modules where P and P′ are projective,prove P⊕K′≅P′⊕K as R -modules. [Show that there is an exact sequence 0→kerπ→X→πP→0 with kerπ≅K′ ,where X is the fiber product of φ and φ′ as in the previous exercise. Deduce that X≅P⊕K′ . Show similarly that X≅P′⊕K .]
(a) (Schanuel引理)如果 0→K→P→φM→0 和 0→K′→P′→φ′M→0 是 R -模的精确序列,其中 P 和 P′ 是投射的,证明 P⊕K′≅P′⊕K 作为 R -模。[证明存在一个精确序列 0→kerπ→X→πP→0 ,其中 kerπ≅K′ ,X 是如上练习中的 φ 和 φ′ 的纤维积。推出 X≅P⊕K′ 。类似地证明 X≅P′⊕K 。]
(b) If 0→M→Q→ψL→0 and 0→M→Q′→ψ′L′→0 are exact sequences of R -modules where Q and Q′ are injective,prove Q⊕L′≅Q′⊕L as R -modules.
(b) 如果 0→M→Q→ψL→0 和 0→M→Q′→ψ′L′→0 是 R -模的精确序列,其中 Q 和 Q′ 是内射的,证明 Q⊕L′≅Q′⊕L 作为 R -模。
The R -modules M and N are said to be projectively equivalent if M⊕P≅N⊕P′ for some projective modules P,P′ . Similarly, M and N are injectively equivalent if M⊕Q≅N⊕Q′ for some injective modules Q,Q′ . The previous exercise shows K and K′ are projectively equivalent and L and L′ are injectively equivalent.
设 R -模 M 和 N 若存在 M⊕P≅N⊕P′ 对于某些投射模 P,P′ ,则称它们是投射等价的。类似地,M 和 N 若存在 M⊕Q≅N⊕Q′ 对于某些内射模 Q,Q′ ,则称它们是内射等价的。之前的练习表明 K 和 K′ 是投射等价的,而 L 和 L′ 是内射等价的。