5.3 小阶群的表格 5.4 识别直积

50 阅读4分钟

5.3 TABLE OF GROUPS OF SMALL ORDER

5.3 小阶群的表格

At this point we can give a table of the isomorphism types for most of the groups of small order.

在这一点上,我们可以给出大多数小阶群的同构类型的表格。

Each of the unfamiliar non-abelian groups in the table on the following page will be constructed in Section 5 on semidirect products (which will also explain the notation used for them). For the present we give generators and relations for each of them (i.e., presentations of them).

在下一页表格中出现的每个不熟悉的非阿贝尔群都将在第5节关于半直积的内容中构建(这将解释用于它们的符号)。目前,我们给出它们的生成元和关系(即它们的表示)。

The group Z3Z4{Z}_{3} \rtimes {Z}_{4} of order 12 can be described by the generators and relations:

阶为12的群 Z3Z4{Z}_{3} \rtimes {Z}_{4} 可以通过生成元和关系来描述:

x,yx4=y3=1,x1yx=y1,\left\langle {x,y \mid {x}^{4} = {y}^{3} = 1,{x}^{-1}{yx} = {y}^{-1}}\right\rangle ,

namely,it has a normal Sylow 3-subgroup (y)\left( {\langle y\rangle }\right) which is inverted by an element of order 4(x)4\left( x\right) acting by conjugation (x2\left( {x}^{2}\right. centralizes y)\left. y\right) .

即,它有一个正规 Sylow 3-子群 (y)\left( {\langle y\rangle }\right) ,该子群被一个阶为 4(x)4\left( x\right) 的元素通过共轭作用反转 (x2\left( {x}^{2}\right. centralized y)\left. y\right)

The group (Z3×Z3)Z2\left( {{Z}_{3} \times {Z}_{3}}\right) \rtimes {Z}_{2} has generators and relations:

(Z3×Z3)Z2\left( {{Z}_{3} \times {Z}_{3}}\right) \rtimes {Z}_{2} 有生成元和关系:

x,y,zx2=y3=z3=1,yz=zy,x1yx=y1,x1zx=z1,\left\langle {x,y,z \mid {x}^{2} = {y}^{3} = {z}^{3} = 1,{yz} = {zy},{x}^{-1}{yx} = {y}^{-1},{x}^{-1}{zx} = {z}^{-1}}\right\rangle ,

namely,it has a normal Sylow 3-subgroup isomorphic to Z3×Z3(y,z){Z}_{3} \times {Z}_{3}\left( {\langle y,z\rangle }\right) inverted by an element of order 2(x)2\left( x\right) acting by conjugation.

即,它有一个正规 Sylow 3-子群同构于 Z3×Z3(y,z){Z}_{3} \times {Z}_{3}\left( {\langle y,z\rangle }\right) ,被一个阶为 2(x)2\left( x\right) 的元素通过共轭作用反转。

The group Z5Z4{Z}_{5} \rtimes {Z}_{4} of order 20 has generators and relations:

阶为20的群 Z5Z4{Z}_{5} \rtimes {Z}_{4} 有生成元和关系:

x,yx4=y5=1,x1yx=y1,\left\langle {x,y \mid {x}^{4} = {y}^{5} = 1,{x}^{-1}{yx} = {y}^{-1}}\right\rangle ,

namely,it has a normal Sylow5-subgroup (y)\left( {\langle y\rangle }\right) which is inverted by an element of order 4(x)4\left( x\right) acting by conjugation (x2\left( {x}^{2}\right. centralizes y)\left. y\right) .

即,它有一个正规 Sylow 5-子群 (y)\left( {\langle y\rangle }\right) ,该子群被一个阶为 4(x)4\left( x\right) 的元素通过共轭作用反转 (x2\left( {x}^{2}\right. centralized y)\left. y\right)

71${Z}_{7}$none
85${\mathbb{Z}}_{8},{\mathbb{Z}}_{4} \times {\mathbb{Z}}_{2}$ ${\mathbb{Z}}_{2} \times {\mathbb{Z}}_{2} \times {\mathbb{Z}}_{2}$${D}_{8},{Q}_{8}$
92${Z}_{9},{Z}_{3} \times {Z}_{3}$none
102${Z}_{10}$${D}_{10}$
111${Z}_{11}$none
125${Z}_{12},{Z}_{6} \times {Z}_{2}$${A}_{4},{D}_{12},{\mathbb{Z}}_{3} \rtimes {\mathbb{Z}}_{4}$
131${Z}_{13}$none
142${Z}_{14}$${D}_{14}$
151${Z}_{15}$none
1614${Z}_{16},{Z}_{8} \times {Z}_{2}$ ${\mathbb{Z}}_{4} \times {\mathbb{Z}}_{4},\;{\mathbb{Z}}_{4} \times {\mathbb{Z}}_{2} \times {\mathbb{Z}}_{2},$ ${\mathbb{Z}}_{2} \times {\mathbb{Z}}_{2} \times {\mathbb{Z}}_{2} \times {\mathbb{Z}}_{2}$not listed
171${Z}_{17}$none
185${Z}_{18},{Z}_{6} \times {Z}_{3}$${D}_{18},{S}_{3} \times {Z}_{3}$ , $\left( {{\mathbb{Z}}_{3} \times {\mathbb{Z}}_{3}}\right) \rtimes {\mathbb{Z}}_{2}$
191${Z}_{19}$none
205${Z}_{20},{Z}_{10} \times {Z}_{2}$${D}_{20}$ ${Z}_{5} \rtimes {Z}_{4},{F}_{20}$

The group F20{F}_{20} of order 20 has generators and relations:

阶为20的群 F20{F}_{20} 有生成元和关系:

x,yx4=y5=1,xyx1=y2,\left\langle {x,y \mid {x}^{4} = {y}^{5} = 1,{xy}{x}^{-1} = {y}^{2}}\right\rangle ,

xx mely,it has a normal Sylow5-subgroup (  y  )\left( {\langle \;y\;\rangle }\right) which is squared by an element of order (x) acting by conjugation. One can check that this group occurs as the normalizer of Sylow 5-subgroup in S5{S}_{5} ,e.g.,

xx 即,它有一个正规 Sylow 5-子群 (  y  )\left( {\langle \;y\;\rangle }\right) ,该子群被一个阶为 (x) 的元素通过共轭作用平方。可以验证这个群作为 S5{S}_{5} 中 Sylow 5-子群的正规化出现,例如,

F20=(2354),(12345).{F}_{20} = \langle \left( {2354}\right) ,\left( {12345}\right) \rangle .

his group is called the Frobenius group of order 20 .

这个群被称为阶为20的Frobenius群。

EXERCISE

练习

  1. Prove that D16,Z2×D8,Z2×Q8,Z4D8,QD16{D}_{16},{Z}_{2} \times {D}_{8},{Z}_{2} \times {Q}_{8},{Z}_{4} * {D}_{8},Q{D}_{16} and MM are nonisomorphic non-abelian groups of order 16 (where Z4D8{Z}_{4} * {D}_{8} is described in Exercise 12,Section 1 and QD16Q{D}_{16} and MM are described in the exercises in Section 2.5).

  2. 证明 D16,Z2×D8,Z2×Q8,Z4D8,QD16{D}_{16},{Z}_{2} \times {D}_{8},{Z}_{2} \times {Q}_{8},{Z}_{4} * {D}_{8},Q{D}_{16}MM 是非同构的非阿贝尔群,它们的阶为16(其中 Z4D8{Z}_{4} * {D}_{8} 在练习12中描述,位于第1节,而 QD16Q{D}_{16}MM 在第2.5节的练习中描述)。

5.4 RECOGNIZING DIRECT PRODUCTS

5.4 识别直积

So far we have seen that direct products may be used to both construct “larger” groups from “smaller” ones and to decompose finitely generated abelian groups into cyclic factors. Even certain non-abelian groups, which may be given in some other form, may be decomposed as direct products of smaller groups. The purpose of this section is to indicate a criterion to recognize when a group is the direct product of some of its subgroups and to illustrate the criterion with some examples.

到目前为止,我们已经看到,直积可以用来从“较小的”群构造“较大的”群,也可以用来分解有限生成的阿贝尔群为循环因子。甚至某些可能以其他形式给出的非阿贝尔群,也可以分解为较小群的直积。本节的目的是指出一个标准,用于识别一个群何时是其某些子群的直积,并用一些例子来说明这个标准。

Before doing so we introduce some standard notation and elementary results on commutators which will streamline the presentation and which will be used again in Chapter 6 when we consider nilpotent groups.

在此之前,我们引入一些标准的记号和关于换位子的一些基本结果,这将使论述更加简洁,并在第6章考虑幂零群时再次使用。

Definition. Let GG be a group,let x,yGx,y \in G and let A,BA,B be nonempty subsets of GG .

定义。设 GG 是一个群,x,yGx,y \in GA,BA,BGG 的非空子集。

(1) Define [x,y]=x1y1xy\left\lbrack {x,y}\right\rbrack = {x}^{-1}{y}^{-1}{xy} ,called the commutator of xx and yy .

(1) 定义 [x,y]=x1y1xy\left\lbrack {x,y}\right\rbrack = {x}^{-1}{y}^{-1}{xy},称为 xxyy 的换位子。

(2) Define [A,B]=[a,b]aA,bB\left\lbrack {A,B}\right\rbrack = \langle \left\lbrack {a,b}\right\rbrack \mid a \in A,b \in B\rangle ,the group generated by commutators of elements from AA and from BB .

(2) 定义 [A,B]=[a,b]aA,bB\left\lbrack {A,B}\right\rbrack = \langle \left\lbrack {a,b}\right\rbrack \mid a \in A,b \in B\rangle,由 AABB 中元素的换位子生成的群。

(3) Define G=[x,y]x,yG{G}^{\prime } = \langle \left\lbrack {x,y}\right\rbrack \mid x,y \in G\rangle ,the subgroup of GG generated by commutators of elements from GG ,called the commutator subgroup of GG .

(3) 定义 G=[x,y]x,yG{G}^{\prime } = \langle \left\lbrack {x,y}\right\rbrack \mid x,y \in G\rangle,是 GG 中由 GG 的元素的换位子生成的子群,称为 GG 的换位子群。

The commutator of xx and yy is 1 if and only if xx and yy commute,which explains the terminology. The following proposition shows how commutators measure the “difference” in GG between xy{xy} and yx{yx} .

xxyy 的换位子为1当且仅当 xxyy 可交换,这解释了术语的使用。以下命题展示了换位子如何衡量 GGxy{xy}yx{yx} 之间的“差异”。

Proposition 7. Let GG be a group,let x,yGx,y \in G and let HGH \leq G . Then

命题7。设 GG 为一个群,令 x,yGx,y \in G 并且令 HGH \leq G

(1) xy=yx[x,y]{xy} = {yx}\left\lbrack {x,y}\right\rbrack (in particular, xy=yx{xy} = {yx} if and only if [x,y]=1\left\lbrack {x,y}\right\rbrack = 1 ).

(1) xy=yx[x,y]{xy} = {yx}\left\lbrack {x,y}\right\rbrack (特别地,当且仅当 xy=yx{xy} = {yx} )。

(2) HGH \trianglelefteq G if and only if [H,G]H\left\lbrack {H,G}\right\rbrack \leq H .

(2) HGH \trianglelefteq G 当且仅当 [H,G]H\left\lbrack {H,G}\right\rbrack \leq H

(3) σ[x,y]=[σ(x),σ(y)]\sigma \left\lbrack {x,y}\right\rbrack = \left\lbrack {\sigma \left( x\right) ,\sigma \left( y\right) }\right\rbrack for any automorphism σ\sigma of G,GG,{G}^{\prime } char GG and G/GG/{G}^{\prime } is abelian.

(3) 对任何 σ[x,y]=[σ(x),σ(y)]\sigma \left\lbrack {x,y}\right\rbrack = \left\lbrack {\sigma \left( x\right) ,\sigma \left( y\right) }\right\rbrack 的自同构 σ\sigma ,若 G,GG,{G}^{\prime } 的特征 GG 并且 G/GG/{G}^{\prime } 是阿贝尔群。

(4) G/GG/{G}^{\prime } is the largest abelian quotient of GG in the sense that if HGH \trianglelefteq G and G/HG/H is abelian,then GH{G}^{\prime } \leq H . Conversely,if GH{G}^{\prime } \leq H ,then HGH \trianglelefteq G and G/HG/H is abelian.

(4) G/GG/{G}^{\prime }GG 的最大阿贝尔商群,在以下意义上:如果 HGH \trianglelefteq G 并且 G/HG/H 是阿贝尔群,那么 GH{G}^{\prime } \leq H 。反之,如果 GH{G}^{\prime } \leq H ,那么 HGH \trianglelefteq G 并且 G/HG/H 是阿贝尔群。

(5) If φ:GA\varphi : G \rightarrow A is any homomorphism of GG into an abelian group AA ,then φ\varphi factors through G{G}^{\prime } i.e., Gkerφ{G}^{\prime } \leq \ker \varphi and the following diagram commutes:

(5) 如果 φ:GA\varphi : G \rightarrow AGG 到阿贝尔群 AA 的任意同态,那么 φ\varphi 通过 G{G}^{\prime } 分解,即 Gkerφ{G}^{\prime } \leq \ker \varphi ,并且以下图表可交换:

Proof: (1) This is immediate from the definition of [x,y]\left\lbrack {x,y}\right\rbrack .

证明:(1) 这直接来自 [x,y]\left\lbrack {x,y}\right\rbrack 的定义。

(2) By definition, HGH \trianglelefteq G if and only if g1hgH{g}^{-1}{hg} \in H for all gGg \in G and all hHh \in H . For hH,g1hgHh \in H,{g}^{-1}{hg} \in H if and only if h1g1hgH{h}^{-1}{g}^{-1}{hg} \in H ,so that HGH \trianglelefteq G if and only if [h,g]H\left\lbrack {h,g}\right\rbrack \in H for all hHh \in H and all gGg \in G . Thus HGH \trianglelefteq G if and only if [H,G]H,\left\lbrack {H,G}\right\rbrack \leq H, which is (2).

(2) 根据定义, HGH \trianglelefteq G 当且仅当对所有 g1hgH{g}^{-1}{hg} \in H 和所有 gGg \in G 。对于 hHh \in H 当且仅当 hH,g1hgHh \in H,{g}^{-1}{hg} \in H ,因此 HGH \trianglelefteq G 当且仅当对所有 gGg \in G 和所有 hHh \in H 。因此 HGH \trianglelefteq G 当且仅当 h1g1hgH{h}^{-1}{g}^{-1}{hg} \in H ,即 (2)。

(3) Let σAut(G)\sigma \in \operatorname{Aut}\left( G\right) be an automorphism of GG and let x,yGx,y \in G . Then

(3) 令 σAut(G)\sigma \in \operatorname{Aut}\left( G\right)GG 的自同构,且令 x,yGx,y \in G 。那么

σ([x,y])=σ(x1y1xy)\sigma \left( \left\lbrack {x,y}\right\rbrack \right) = \sigma \left( {{x}^{-1}{y}^{-1}{xy}}\right)
=σ(x)1σ(y)1σ(x)σ(y)= \sigma {\left( x\right) }^{-1}\sigma {\left( y\right) }^{-1}\sigma \left( x\right) \sigma \left( y\right)
=[σ(x),σ(y)]= \left\lbrack {\sigma \left( x\right) ,\sigma \left( y\right) }\right\rbrack

Thus for every commutator [x,y]\left\lbrack {x,y}\right\rbrack of G,σ([x,y]){G}^{\prime },\sigma \left( \left\lbrack {x,y}\right\rbrack \right) is again a commutator. Since σ\sigma has a 2-sided inverse, it follows that it maps the set of commutators bijectively onto itself. Since the commutators are a generating set for G,σ(G)=G{G}^{\prime },\sigma \left( {G}^{\prime }\right) = {G}^{\prime } ,that is, G{G}^{\prime } char GG .

因此,对于 G,σ([x,y]){G}^{\prime },\sigma \left( \left\lbrack {x,y}\right\rbrack \right) 的每一个交换子 [x,y]\left\lbrack {x,y}\right\rbrack ,它仍然是一个交换子。由于 σ\sigma 有一个两边逆元,因此它将交换子的集合双射到其自身。由于交换子是 G,σ(G)=G{G}^{\prime },\sigma \left( {G}^{\prime }\right) = {G}^{\prime } 的生成集,即 G{G}^{\prime } 拉丁字母 GG

To see that G/GG/{G}^{\prime } is abelian,let xGx{G}^{\prime } and yGy{G}^{\prime } be arbitrary elements of G/GG/{G}^{\prime } . By definition of the group operation in G/GG/{G}^{\prime } and since [x,y]G\left\lbrack {x,y}\right\rbrack \in {G}^{\prime } we have

为了看出 G/GG/{G}^{\prime } 是阿贝尔群,令 xGx{G}^{\prime }yGy{G}^{\prime }G/GG/{G}^{\prime } 的任意元素。根据 G/GG/{G}^{\prime } 中群运算的定义,并且由于 [x,y]G\left\lbrack {x,y}\right\rbrack \in {G}^{\prime } ,我们有

(xG)(yG)=(xy)G\left( {x{G}^{\prime }}\right) \left( {y{G}^{\prime }}\right) = \left( {xy}\right) {G}^{\prime }
=(yx[x,y])G= \left( {{yx}\left\lbrack {x,y}\right\rbrack }\right) {G}^{\prime }
=(yx)G=(yG)(xG),= \left( {yx}\right) {G}^{\prime } = \left( {y{G}^{\prime }}\right) \left( {x{G}^{\prime }}\right) ,

which completes the proof of (3).

这完成了 (3) 的证明。

(4) Suppose HGH \leq G and G/HG/H is abelian. Then for all x,yGx,y \in G we have (xH)(yH)=(yH)(xH)\left( {xH}\right) \left( {yH}\right) = \left( {yH}\right) \left( {xH}\right) ,so

(4) 假设 HGH \leq G 并且 G/HG/H 是阿贝尔群。那么对于所有的 x,yGx,y \in G ,我们有 (xH)(yH)=(yH)(xH)\left( {xH}\right) \left( {yH}\right) = \left( {yH}\right) \left( {xH}\right) ,所以

1H=(xH)1(yH)1(xH)(yH){1H} = {\left( xH\right) }^{-1}{\left( yH\right) }^{-1}\left( {xH}\right) \left( {yH}\right)
=x1y1xyH= {x}^{-1}{y}^{-1}{xyH}
=[x,y]H.= \left\lbrack {x,y}\right\rbrack H\text{.}

Thus [x,y]H\left\lbrack {x,y}\right\rbrack \in H for all x,yGx,y \in G ,so that GH{G}^{\prime } \leq H .

因此 [x,y]H\left\lbrack {x,y}\right\rbrack \in H 对于所有的 x,yGx,y \in G ,所以 GH{G}^{\prime } \leq H

Conversely,if GH{G}^{\prime } \leq H ,then since G/GG/{G}^{\prime } is abelian by (3),every subgroup of G/GG/{G}^{\prime } is normal. In particular, H/GG/GH/{G}^{\prime } \trianglelefteq G/{G}^{\prime } . By the Lattice Isomorphism Theorem HGH \trianglelefteq G . By the Third Isomorphism Theorem

反之,如果 GH{G}^{\prime } \leq H ,那么由于 (3) 中的 G/GG/{G}^{\prime } 是阿贝尔群,G/GG/{G}^{\prime } 的每个子群都是正规子群。特别地,H/GG/GH/{G}^{\prime } \trianglelefteq G/{G}^{\prime } 。根据格同构定理 HGH \trianglelefteq G 。根据第三同构定理

G/H(G/G)/(H/G)G/H \cong \left( {G/{G}^{\prime }}\right) /\left( {H/{G}^{\prime }}\right)

hence G/HG/H is abelian (being isomorphic to a quotient of the abelian group G/GG/{G}^{\prime } ). This proves (4).

因此 G/HG/H 是阿贝尔群(与阿贝尔群 G/GG/{G}^{\prime } 的商群同构)。这证明了 (4)。

(5) This is (4) phrased in terms of homomorphisms.

(5) 这是用同态的术语重述的 (4)。

Passing to the quotient by the commutator subgroup of GG collapses all commutators to the identity so that all elements in the quotient group commute. As (4) indicates, a strong converse to this also holds: a quotient of GG by HH is abelian if and only if the commutator subgroup is contained in HH (i.e.,if and only if G{G}^{\prime } is mapped to the identity in the quotient G/HG/H ).

通过对 GG 的换位子群取商,将所有换位子压缩成单位元,使得商群中的所有元素都交换。正如(4)所示,这也具有一个强烈的逆命题:GG 关于 HH 的商是阿贝尔群当且仅当换位子群包含在 HH 中(即当且仅当 G{G}^{\prime } 在商 G/HG/H 中映射为单位元)。

We shall exhibit a group (of order 96) in the next section with the property that one of the elements of its commutator subgroup cannot be written as a single commutator [x,y]\left\lbrack {x,y}\right\rbrack for any xx and yy . Thus G{G}^{\prime } does not necessarily consist only of the set of (single) commutators (but is the group generated by these elements).

我们将在下一节展示一个阶数为96的群,其性质是它的换位子群中的一个元素不能写成单一的换位子 [x,y]\left\lbrack {x,y}\right\rbrack 对于任意的 xxyy 。因此 G{G}^{\prime } 不一定仅由(单一的)换位子集合构成(但由这些元素生成的群)。

Examples

示例

(1) A group GG is abelian if and only if G=1{G}^{\prime } = 1 .

(1)一个群 GG 是阿贝尔群当且仅当 G=1{G}^{\prime } = 1

(2) Sometimes it is possible to compute the commutator subgroup of a group without actually calculating commutators explicitly. For instance,if G=D8G = {D}_{8} ,then since Z(D8)=r2D8Z\left( {D}_{8}\right) = \left\langle {r}^{2}\right\rangle \trianglelefteq {D}_{8} and D8/Z(D8){D}_{8}/Z\left( {D}_{8}\right) is abelian (the Klein 4-group),the commutator subgroup D8{D}_{8}^{\prime } is a subgroup of Z(D8)Z\left( {D}_{8}\right) . Since D8{D}_{8} is not itself abelian its commutator subgroup is nontrivial. The only possibility is that D8=Z(D8){D}_{8}^{\prime } = Z\left( {D}_{8}\right) . By a similar argument, Q8=Z(Q8)=1{Q}_{8}^{\prime } = Z\left( {Q}_{8}\right) = \langle - 1\rangle . More generally,if GG is any non-abelian group of order p3{p}^{3} ,where pp is a prime, G=Z(G){G}^{\prime } = Z\left( G\right) and G=p\left| {G}^{\prime }\right| = p (Exercise 7).

(2)有时可以在不显式计算换位子的情况下计算出群的换位子群。例如,如果 G=D8G = {D}_{8} ,那么由于 Z(D8)=r2D8Z\left( {D}_{8}\right) = \left\langle {r}^{2}\right\rangle \trianglelefteq {D}_{8}D8/Z(D8){D}_{8}/Z\left( {D}_{8}\right) 是阿贝尔群(克莱因四元群),换位子群 D8{D}_{8}^{\prime }Z(D8)Z\left( {D}_{8}\right) 的子群。由于 D8{D}_{8} 本身不是阿贝尔群,其换位子群是非平凡的。唯一可能的情况是 D8=Z(D8){D}_{8}^{\prime } = Z\left( {D}_{8}\right) 。通过类似的论证, Q8=Z(Q8)=1{Q}_{8}^{\prime } = Z\left( {Q}_{8}\right) = \langle - 1\rangle 。更一般地,如果 GG 是任意一个阶数为 p3{p}^{3} 的非阿贝尔群,其中 pp 是一个素数, G=Z(G){G}^{\prime } = Z\left( G\right)G=p\left| {G}^{\prime }\right| = p (练习7)。

(3) Let D2n=r,srn=s2=1,s1rs=r1{D}_{2n} = \left\langle {r,s \mid {r}^{n} = {s}^{2} = 1,{s}^{-1}{rs} = {r}^{-1}}\right\rangle . Since [r,s]=r2\left\lbrack {r,s}\right\rbrack = {r}^{-2} ,we have r2=r2D2n\left\langle {r}^{-2}\right\rangle = \left\langle {r}^{2}\right\rangle \leq {D}_{2n}^{\prime } . Furthermore, r2D2n\left\langle {r}^{2}\right\rangle \leq {D}_{2n} and the images of rr and ss in D2n/r2{D}_{2n}/\left\langle {r}^{2}\right\rangle generate this quotient. They are commuting elements of order 2\leq 2 ,so the quotient is abelian and D2nr2{D}_{2n}^{\prime } \leq \left\langle {r}^{2}\right\rangle . Thus D2n=r2{D}_{2n}^{\prime } = \left\langle {r}^{2}\right\rangle . Finally,note that if n(=r)n\left( { = \left| r\right| }\right) is odd, r2=r\left\langle {r}^{2}\right\rangle = \langle r\rangle whereas if nn is even, r2\left\langle {r}^{2}\right\rangle is of index2in r\langle r\rangle . Hence D2n{D}_{2n}^{\prime } is of index 2 or 4 in D2n{D}_{2n} according to whether nn is odd or even,respectively.

(3) 设 D2n=r,srn=s2=1,s1rs=r1{D}_{2n} = \left\langle {r,s \mid {r}^{n} = {s}^{2} = 1,{s}^{-1}{rs} = {r}^{-1}}\right\rangle 。由于 [r,s]=r2\left\lbrack {r,s}\right\rbrack = {r}^{-2} ,我们有 r2=r2D2n\left\langle {r}^{-2}\right\rangle = \left\langle {r}^{2}\right\rangle \leq {D}_{2n}^{\prime } 。此外,r2D2n\left\langle {r}^{2}\right\rangle \leq {D}_{2n} 并且 rrssD2n/r2{D}_{2n}/\left\langle {r}^{2}\right\rangle 中的像生成了这个商。它们是阶为 2\leq 2 的交换元素,所以商是阿贝尔群且 D2nr2{D}_{2n}^{\prime } \leq \left\langle {r}^{2}\right\rangle 。因此 D2n=r2{D}_{2n}^{\prime } = \left\langle {r}^{2}\right\rangle 。最后,注意如果 n(=r)n\left( { = \left| r\right| }\right) 是奇数,则 r2=r\left\langle {r}^{2}\right\rangle = \langle r\rangle ;而如果 nn 是偶数,则 r2\left\langle {r}^{2}\right\rangler\langle r\rangle 中的指数为2。因此,根据 nn 是奇数还是偶数,D2n{D}_{2n}^{\prime }D2n{D}_{2n} 中的指数为2或4。

(4) Since conjugation by gGg \in G is an automorphism of G,[ag,bg]=[a,b]gG,\left\lbrack {{a}^{g},{b}^{g}}\right\rbrack = {\left\lbrack a,b\right\rbrack }^{g} for all a,ba,b \in GG by (3) of the proposition, i.e., conjugates of commutators are also commutators. For example,once we exhibit an element of one cycle type in Sn{S}_{n} as a commutator, every element of the same cycle type is also a commutator (cf. Section 4.3). For example,every 5-cycle is a commutator in S5{S}_{5} as follows: labelling the vertices of a pentagon as 1,,51,\ldots ,5 we see that D10S5{D}_{10} \leq {S}_{5} (a subgroup of A5{A}_{5} in fact). By the preceding example an element of order 5 is a commutator in D10{D}_{10} ,hence also in S5{S}_{5} . Explicitly, (14253)=[(12345),(25)(43)].\left( {14253}\right) = \left\lbrack {\left( {12345}\right) ,\left( {25}\right) \left( {43}\right) }\right\rbrack .

(4) 由于由 gGg \in G 的共轭是 G,[ag,bg]=[a,b]gG,\left\lbrack {{a}^{g},{b}^{g}}\right\rbrack = {\left\lbrack a,b\right\rbrack }^{g} 的自同构,对所有 a,ba,b \in GG 成立,根据命题中的(3),即共轭的换位子也是换位子。例如,一旦我们在 Sn{S}_{n} 中展示了一个作为换位子的一个循环类型的元素,那么具有相同循环类型的每个元素也是换位子(参见第4.3节)。例如,每个5-循环在 S5{S}_{5} 中都是换位子,如下所示:将五边形的顶点标记为 1,,51,\ldots ,5 ,我们看到 D10S5{D}_{10} \leq {S}_{5} (实际上是 A5{A}_{5} 的一个子群)。根据前一个例子,阶为5的元素在 D10{D}_{10} 中是换位子,因此在 S5{S}_{5} 中也是。具体来说,(14253)=[(12345),(25)(43)].\left( {14253}\right) = \left\lbrack {\left( {12345}\right) ,\left( {25}\right) \left( {43}\right) }\right\rbrack .

The next result actually follows from the proof of Proposition 3.13 but we isolate it explicitly for reference:

下一个结果实际上是从命题3.13的证明中得出的,但我们明确地将其分离出来以供参考:

Proposition 8. Let HH and KK be subgroups of the group GG . The number of distinct ways of writing each element of the set HK{HK} in the form hk{hk} ,for some hHh \in H and kKk \in K is HK\left| {H \cap K}\right| . In particular,if HK=1H \cap K = 1 ,then each element of HK{HK} can be written uniquely as a product hk{hk} ,for some hHh \in H and kKk \in K .

命题 8. 设 HHKK 是群 GG 的子群。将集合 HK{HK} 的每个元素写成形式 hk{hk} 的不同方法数,对于某些 hHh \in HkKk \in KHK\left| {H \cap K}\right|。特别地,如果 HK=1H \cap K = 1,那么集合 HK{HK} 的每个元素都可以唯一地写成乘积 hk{hk} 的形式,对于某些 hHh \in HkKk \in K

Proof: Exercise.

证明:练习。

The main result of this section is the following recognition theorem.

本节的主要结果是以下识别定理。

Theorem 9. Suppose GG is a group with subgroups HH and KK such that

定理 9. 假设 GG 是一个具有子群 HHKK 的群,使得

(1) HH and KK are normal in GG ,and

(1) HHKKGG 中是正规子群,并且

(2) HK=1H \cap K = 1 .

(2) HK=1H \cap K = 1

Then HKH×K{HK} \cong H \times K .

那么 HKH×K{HK} \cong H \times K

Proof: Observe that by hypothesis (1),HK is a subgroup of G (see Corollary 3.15).\textit{Proof: }\textit{Observe that by hypothesis (1),HK is a subgroup of }G\textit{ (see Corollary 3.15).} Let hHh \in H and let kKk \in K . Since HG,k1hkHH \trianglelefteq G,{k}^{-1}{hk} \in H ,so that h1(k1hk)H{h}^{-1}\left( {{k}^{-1}{hk}}\right) \in H . Similarly, (h1k1h)kK\left( {{h}^{-1}{k}^{-1}h}\right) k \in K . Since HK=1H \cap K = 1 it follows that h1k1hk=1{h}^{-1}{k}^{-1}{hk} = 1 ,i.e., hk=kh{hk} = {kh} so that every element of HH commutes with every element of KK .

Proof: Observe that by hypothesis (1),HK is a subgroup of G (see Corollary 3.15).\textit{Proof: }\textit{Observe that by hypothesis (1),HK is a subgroup of }G\textit{ (see Corollary 3.15).}hHh \in H 并且 kKk \in K。由于 HG,k1hkHH \trianglelefteq G,{k}^{-1}{hk} \in H,因此 h1(k1hk)H{h}^{-1}\left( {{k}^{-1}{hk}}\right) \in H。类似地,(h1k1h)kK\left( {{h}^{-1}{k}^{-1}h}\right) k \in K。由于 HK=1H \cap K = 1,因此 h1k1hk=1{h}^{-1}{k}^{-1}{hk} = 1,即 hk=kh{hk} = {kh},因此 HH 的每个元素都与 KK 的每个元素交换。

By the preceding proposition each element of HK{HK} can be written uniquely as a product hk{hk} ,with hHh \in H and kKk \in K . Thus the map

根据前面的命题,HK{HK} 的每个元素都可以唯一地写成乘积 hk{hk} 的形式,其中 hHh \in HkKk \in K。因此映射

φ:HKH×K\varphi : {HK} \rightarrow H \times K
hk(h,k){hk} \mapsto \left( {h,k}\right)

is well defined. To see that φ\varphi is a homomorphism note that if h1,h2H{h}_{1},{h}_{2} \in H and k1,k2K{k}_{1},{k}_{2} \in K , then we have seen that h2{h}_{2} and k1{k}_{1} commute. Thus

是良定义的。为了看到 φ\varphi 是同态,注意如果 h1,h2H{h}_{1},{h}_{2} \in Hk1,k2K{k}_{1},{k}_{2} \in K,那么我们已经看到 h2{h}_{2}k1{k}_{1} 是交换的。因此

(h1k1)(h2k2)=(h1h2)(k1k2)\left( {{h}_{1}{k}_{1}}\right) \left( {{h}_{2}{k}_{2}}\right) = \left( {{h}_{1}{h}_{2}}\right) \left( {{k}_{1}{k}_{2}}\right)

and the latter product is the unique way of writing (h1k1)(h2k2)\left( {{h}_{1}{k}_{1}}\right) \left( {{h}_{2}{k}_{2}}\right) in the form hk{hk} with hHh \in H and kKk \in K . This shows that

后者的乘积是将 (h1k1)(h2k2)\left( {{h}_{1}{k}_{1}}\right) \left( {{h}_{2}{k}_{2}}\right) 写成形式 hk{hk} 的唯一方式,其中 hHh \in HkKk \in K。这表明

φ(h1k1h2k2)=φ(h1h2k1k2)\varphi \left( {{h}_{1}{k}_{1}{h}_{2}{k}_{2}}\right) = \varphi \left( {{h}_{1}{h}_{2}{k}_{1}{k}_{2}}\right)
=(h1h2,k1k2)= \left( {{h}_{1}{h}_{2},{k}_{1}{k}_{2}}\right)
=(h1,k1)(h2,k2)=φ(h1k1)φ(h2k2)= \left( {{h}_{1},{k}_{1}}\right) \left( {{h}_{2},{k}_{2}}\right) = \varphi \left( {{h}_{1}{k}_{1}}\right) \varphi \left( {{h}_{2}{k}_{2}}\right)

so that φ\varphi is a homomorphism. The homomorphism φ\varphi is a bijection since the representation of each element of HK{HK} as a product of the form hk{hk} is unique,which proves that φ\varphi is an isomorphism.

使得 φ\varphi 是一个同态。因为每个元素 HK{HK} 表示为形式 hk{hk} 的乘积是唯一的,所以同态 φ\varphi 是一个双射,这证明了 φ\varphi 是一个同构。

Definition. If GG is a group and HH and KK are normal subgroups of G\mathrm{G} with HK=1H \cap K = 1 , we call   HK  \;{HK}\; the internal direct product of   H  \;H\; and   K.  \;K.\; We shall (when emphasis is called for) call H×KH \times K the external direct product of HH and KK .

定义。如果 GG 是一个群,且 HHKKG\mathrm{G} 的正规子群,并且满足 HK=1H \cap K = 1 ,我们称   HK  \;{HK}\;  H  \;H\;  K.  \;K.\; 的内直积。我们将(在需要强调时)称 H×KH \times KHHKK 的外直积。

The distinction between internal and external direct product is (by Theorem 9) purely notational: the elements of the internal direct product are written in the form hk{hk} ,whereas those of the external direct product are written as ordered pairs(h,k). We have in previous instances passed between these. For example,when Zn=a{Z}_{n} = \langle a\rangle and Zm=b{Z}_{m} = \langle b\rangle we wrote x=(a,1)x = \left( {a,1}\right) and y=(1,b)y = \left( {1,b}\right) so that every element of Zn×Zm{Z}_{n} \times {Z}_{m} was written in the form xrys{x}^{r}{y}^{s} .

内直积和外直积之间的区别(由定理9得出)纯粹是符号上的:内直积的元素写成形式 hk{hk} ,而外直积的元素写成有序对 (h,k)。我们在之前的例子中在这些之间进行了转换。例如,当 Zn=a{Z}_{n} = \langle a\rangleZm=b{Z}_{m} = \langle b\rangle 时,我们写成 x=(a,1)x = \left( {a,1}\right)y=(1,b)y = \left( {1,b}\right) ,以便 Zn×Zm{Z}_{n} \times {Z}_{m} 的每个元素都写成 xrys{x}^{r}{y}^{s} 的形式。

Examples

示例

(1) If nn is a positive odd integer,we show D4nD2n×Z2{D}_{4n} \cong {D}_{2n} \times {Z}_{2} . To see this let

(1)如果 nn 是一个正奇数,我们证明 D4nD2n×Z2{D}_{4n} \cong {D}_{2n} \times {Z}_{2} 。为了看到这一点,让

D4n=r,sr2n=s2=1,srs=r1{D}_{4n} = \left\langle {r,s \mid {r}^{2n} = {s}^{2} = 1,{srs} = {r}^{-1}}\right\rangle

be the usual presentation of D4n{D}_{4n} . Let H=s,r2H = \left\langle {s,{r}^{2}}\right\rangle and let K=rnK = \left\langle {r}^{n}\right\rangle . Geometrically, if D4n{D}_{4n} is the group of symmetries of a regular 2n{2n} -gon, HH is the group of symmetries of the regular nn -gon inscribed in the 2n{2n} -gon by joining vertex 2i{2i} to vertex 2i+2{2i} + 2 ,for all i  mod  2ni{\;\operatorname{mod}\;2}n (and if one lets r1=r2,H{r}_{1} = {r}^{2},H has the usual presentation of the dihedral group of order 2n{2n} with generators r1{r}_{1} and ss ). Note that HD4nH \trianglelefteq {D}_{4n} (it has index 2). Since r=2n,rn=2\left| r\right| = {2n},\left| {r}^{n}\right| = 2 . Since srs=r1{srs} = {r}^{-1} ,we have srns=rn=rns{r}^{n}s = {r}^{-n} = {r}^{n} ,that is, ss centralizes rn{r}^{n} . Since clearly rr centralizes rn,KZ(D4n){r}^{n},K \leq Z\left( {D}_{4n}\right) . Thus KD4nK \trianglelefteq {D}_{4n} . Finally, KHK \nleqslant H since r2{r}^{2} has odd order (or because rn{r}^{n} sends vertex ii into vertex i+ni + n ,hence does not preserve the set of even vertices of the 2n{2n} -gon). Thus HK=1H \cap K = 1 by Lagrange. Theorem 9 now completes the proof.

通常是 D4n{D}_{4n} 的表示。设 H=s,r2H = \left\langle {s,{r}^{2}}\right\rangle 并且设 K=rnK = \left\langle {r}^{n}\right\rangle 。几何上,如果 D4n{D}_{4n} 是正 2n{2n} 边形的对称群,HH 是通过连接顶点 2i{2i} 到顶点 2i+2{2i} + 2 内接于 2n{2n} 边形中的正 nn 边形的对称群,对于所有 i  mod  2ni{\;\operatorname{mod}\;2}n(如果设 r1=r2,H{r}_{1} = {r}^{2},H 则具有阶 2n{2n} 的二面体群的通常表示,生成元为 r1{r}_{1}ss)。注意 HD4nH \trianglelefteq {D}_{4n}(它的指数为 2)。由于 r=2n,rn=2\left| r\right| = {2n},\left| {r}^{n}\right| = 2。由于 srs=r1{srs} = {r}^{-1},我们有 srns=rn=rns{r}^{n}s = {r}^{-n} = {r}^{n},即 ss 使 rn{r}^{n}居中。显然 rr 使 rn,KZ(D4n){r}^{n},K \leq Z\left( {D}_{4n}\right) 居中。因此 KD4nK \trianglelefteq {D}_{4n}。最后,KHK \nleqslant H,因为 r2{r}^{2} 有奇数阶(或者因为 rn{r}^{n} 将顶点 ii 映射到顶点 i+ni + n,因此不保留 2n{2n} 边形的偶数顶点集)。因此 HK=1H \cap K = 1 由拉格朗日定理得出。定理 9 现在完成了证明。

(2) Let II be a subset of {1,2,,n}\{ 1,2,\ldots ,n\} and let GG be the setwise stabilizer of II in Sn{S}_{n} ,i.e.,

(2) 设 II{1,2,,n}\{ 1,2,\ldots ,n\} 的一个子集,并且设 GGIISn{S}_{n} 中的集合稳定子,即,

G={σSnσ(i)I for all iI}.G = \left\{ {\sigma \in {S}_{n} \mid \sigma \left( i\right) \in I\text{ for all }i \in I}\right\} .

Let J={1,2,,n}IJ = \{ 1,2,\ldots ,n\} - I be the complement of II and note that GG is also the setwise stabilizer of JJ . Let HH be the pointwise stabilizer of II and let KK be the pointwise stabilizer of {1,2,,n}I\{ 1,2,\ldots ,n\} - I ,i.e.,

J={1,2,,n}IJ = \{ 1,2,\ldots ,n\} - III 的补集,并且注意到 GG 也是 JJ 的集合稳定子。设 HHII 的点稳定子,并且设 KK{1,2,,n}I\{ 1,2,\ldots ,n\} - I 的点稳定子,即,

H={σGσ(i)=i for all iI}H = \{ \sigma \in G \mid \sigma \left( i\right) = i\text{ for all }i \in I\}
K={τGτ(j)=j for all jJ}.K = \{ \tau \in G \mid \tau \left( j\right) = j\text{ for all }j \in J\} .

It is easy to see that HH and KK are normal subgroups of GG (in fact they are kernels of the actions of GG on II and JJ ,respectively). Since any element of HKH \cap K fixes all of {1,2,,n}\{ 1,2,\ldots ,n\} ,we have HK=1H \cap K = 1 . Finally,since every element σ\sigma of GG stabilizes the sets II and JJ ,each cycle in the cycle decomposition of σ\sigma involves only elements of II or only elements of JJ . Thus σ\sigma may be written as a product σIσJ{\sigma }_{I}{\sigma }_{J} ,where σIH{\sigma }_{I} \in H and σJK{\sigma }_{J} \in K . This proves G=HKG = {HK} . By Theorem 9, GH×KG \cong H \times K . Now any permutation of JJ can be extended to a permutation in Sn{S}_{n} by letting it act as the identity on II . These are precisely the permutations in HH (and similarly the permutations in KK are the permutations of II which are the identity on JJ ),so

很容易看出 HHKKGG 的正规子群(实际上它们分别是 GGIIJJ 的作用的核)。由于 HKH \cap K 的任何元素都固定了 {1,2,,n}\{ 1,2,\ldots ,n\} 的所有元素,所以我们有 HK=1H \cap K = 1 。最后,由于 GG 的每个元素 σ\sigma 都使集合 IIJJ 稳定,因此 σ\sigma 的循环分解中的每个循环仅涉及 II 或仅涉及 JJ 的元素。因此 σ\sigma 可以写成乘积 σIσJ{\sigma }_{I}{\sigma }_{J} ,其中 σIH{\sigma }_{I} \in HσJK{\sigma }_{J} \in K 。这证明了 G=HKG = {HK} 。根据定理9, GH×KG \cong H \times K 。现在,JJ 的任何排列都可以通过让它在对 II 上的作用为恒等映射来扩展为 Sn{S}_{n} 中的排列。这些正是 HH 中的排列(同样地,KK 中的排列是 II 上的恒等排列,在 JJ 上为恒等映射),所以

HSJ  KSI and GSm×Snm,H \cong {S}_{J}\;K \cong {S}_{I}\text{ and }G \cong {S}_{m} \times {S}_{n - m},

where m=Jm = \left| J\right| (and,by convention, S=1{S}_{\varnothing } = 1 ).

其中 m=Jm = \left| J\right|(按照惯例,还有 S=1{S}_{\varnothing } = 1)。

  1. Let σSn\sigma \in {S}_{n} and let II be the subset of {1,2,,n}\{ 1,2,\ldots ,n\} fixed pointwise by σ\sigma :

  2. σSn\sigma \in {S}_{n} 并且让 II{1,2,,n}\{ 1,2,\ldots ,n\} 中被 σ\sigma 点固定不变的子集:

I={i{1,2,,n}σ(i)=i}.I = \{ i \in \{ 1,2,\ldots ,n\} \mid \sigma \left( i\right) = i\} .

If C=CSn(σ)C = {C}_{{S}_{n}}\left( \sigma \right) ,then by Exercise 18 of Section 4.3, CC stabilizes the set II and its complement JJ . By the preceding example, CC is isomorphic to a subgroup of H×KH \times K , where HH is the subgroup of all permutations in Sn{S}_{n} fixing II pointwise and KK is the set of all permutations fixing JJ pointwise. Note that σH\sigma \in H . Thus each element, α\alpha ,of CC can be written (uniquely) as α=αIαJ\alpha = {\alpha }_{I}{\alpha }_{J} ,for some αIH{\alpha }_{I} \in H and αJK{\alpha }_{J} \in K . Note further that if τ\tau is any permutation of {1,2,,n}\{ 1,2,\ldots ,n\} which fixes each jJj \in J (i.e.,any element of KK ),then σ\sigma and τ\tau commute (since they move no common integers). Thus CC contains all such τ\tau ,i.e., CC contains the subgroup KK . This proves that the group CC consists of all elements αIαJH×K{\alpha }_{I}{\alpha }_{J} \in H \times K such that αJ{\alpha }_{J} is arbitrary in KK and αI{\alpha }_{I} commutes with σ\sigma in HH :

如果 C=CSn(σ)C = {C}_{{S}_{n}}\left( \sigma \right) ,那么根据第4.3节的练习18,CC 稳定了集合 II 及其补集 JJ 。根据前一个例子,CC 同构于 H×KH \times K 的一个子群,其中 HHSn{S}_{n} 中固定 II 的所有排列的子群,而 KK 是固定 JJ 的所有排列的集合。注意 σH\sigma \in H 。因此,CC 的每个元素 α\alpha 都可以唯一地写成 α=αIαJ\alpha = {\alpha }_{I}{\alpha }_{J} ,对于某些 αIH{\alpha }_{I} \in HαJK{\alpha }_{J} \in K 。进一步注意,如果 τ\tau{1,2,,n}\{ 1,2,\ldots ,n\} 的任何排列,它固定每个 jJj \in J(即 KK 的任何元素),那么 σ\sigmaτ\tau 可交换(因为它们不移动任何共同的整数)。因此 CC 包含所有这样的 τ\tau ,即 CC 包含子群 KK 。这证明了群 CC 由所有满足 αJ{\alpha }_{J}KK 中是任意的,且 αI{\alpha }_{I}HH 中与 σ\sigma 可交换的元素 αIαJH×K{\alpha }_{I}{\alpha }_{J} \in H \times K 组成:

CSn(σ)=CH(σ)×K{C}_{{S}_{n}}\left( \sigma \right) = {C}_{H}\left( \sigma \right) \times K
CSJ(σ)×SI.\cong {C}_{{S}_{J}}\left( \sigma \right) \times {S}_{I}.

In particular,if σ\sigma is an mm -cycle in Sn{S}_{n} ,

特别地,如果 σ\sigmaSn{S}_{n} 中的一个 mm -循环,

CSn(σ)=σ×Snm.{C}_{{S}_{n}}\left( \sigma \right) = \langle \sigma \rangle \times {S}_{n - m}.

The latter group has order m(nm)m\left( {n - m}\right) !,as computed in Section 4.3.

后者的阶为 m(nm)m\left( {n - m}\right) !,如第4.3节所计算。

EXERCISES

练习

Let GG be a group.

GG 是一个群。

  1. Prove that if x,yGx,y \in G then [y,x]=[x,y]1\left\lbrack {y,x}\right\rbrack = {\left\lbrack x,y\right\rbrack }^{-1} . Deduce that for any subsets AA and BB of GG , [A,B]=[B,A]\left\lbrack {A,B}\right\rbrack = \left\lbrack {B,A}\right\rbrack (recall that [A,B]\left\lbrack {A,B}\right\rbrack is the subgroup of GG generated by the commutators [a,b]\left\lbrack {a,b}\right\rbrack ).

  2. 证明如果 x,yGx,y \in G[y,x]=[x,y]1\left\lbrack {y,x}\right\rbrack = {\left\lbrack x,y\right\rbrack }^{-1} 。推导出对于任何 GG 的子集 AABB ,都有 [A,B]=[B,A]\left\lbrack {A,B}\right\rbrack = \left\lbrack {B,A}\right\rbrack(请记住 [A,B]\left\lbrack {A,B}\right\rbrack 是由 GG 的换位子 [a,b]\left\lbrack {a,b}\right\rbrack 生成的子群)。

  3. Prove that a subgroup HH of GG is normal if and only if [G,H]H\left\lbrack {G,H}\right\rbrack \leq H .

  4. 证明一个子群 HHGG 中是正规子群当且仅当 [G,H]H\left\lbrack {G,H}\right\rbrack \leq H

  5. Let a,b,cGa,b,c \in G . Prove that

  6. a,b,cGa,b,c \in G 。证明

(a) [a,bc]=[a,c](c1[a,b]c)\left\lbrack {a,{bc}}\right\rbrack = \left\lbrack {a,c}\right\rbrack \left( {{c}^{-1}\left\lbrack {a,b}\right\rbrack c}\right)

(a) [a,bc]=[a,c](c1[a,b]c)\left\lbrack {a,{bc}}\right\rbrack = \left\lbrack {a,c}\right\rbrack \left( {{c}^{-1}\left\lbrack {a,b}\right\rbrack c}\right)

(b) [ab,c]=(b1[a,c]b)[b,c]\left\lbrack {{ab},c}\right\rbrack = \left( {{b}^{-1}\left\lbrack {a,c}\right\rbrack b}\right) \left\lbrack {b,c}\right\rbrack .

  1. Find the commutator subgroups of S4{S}_{4} and A4{A}_{4} .

  2. Prove that An{A}_{n} is the commutator subgroup of Sn{S}_{n} for all n5n \geq 5 .

  3. Exhibit a representative of each cycle type of A5{A}_{5} as a commutator in S5{S}_{5} .

  4. Prove that if pp is a prime and PP is a non-abelian group of order p3{p}^{3} then P=Z(P){P}^{\prime } = Z\left( P\right) .

  5. Assume x,yGx,y \in G and both xx and yy commute with [x,y]\left\lbrack {x,y}\right\rbrack . Prove that for all nZ+n \in {\mathbb{Z}}^{ + } , (xy)n=xnyn[y,x]n(n1)2.{\left( \frac{x}{y}\right) }^{n} = \frac{{x}^{n}}{{y}^{n}}{\left\lbrack y,x\right\rbrack }^{\frac{n\left( {n - 1}\right) }{2}}.

  6. Prove that if pp is an odd prime and PP is a group of order p3{p}^{3} then the pth {p}^{\text{th }} power map xxpx \mapsto {x}^{p} is a homomorphism of PP into Z(P)Z\left( P\right) . If PP is not cyclic,show that the kernel of the pth {p}^{\text{th }} power map has order p2{p}^{2} or p3{p}^{3} . Is the squaring map a homomorphism in non-abelian groups of order 8? Where is the oddness of pp needed in the above proof? [Use Exercise 8.]

  7. Prove that a finite abelian group is the direct product of its Sylow subgroups.

  8. Prove that if G=HKG = {HK} where HH and KK are characteristic subgroups of GG with HK=1H \cap K = 1 then Aut(G)Aut(H)×Aut(K)\operatorname{Aut}\left( G\right) \cong \operatorname{Aut}\left( H\right) \times \operatorname{Aut}\left( K\right) . Deduce that if GG is an abelian group of finite order then Aut(G)\operatorname{Aut}\left( G\right) is isomorphic to the direct product of the automorphism groups of its Sylow subgroups.

  9. Use Theorem 4.17 to describe the automorphism group of a finite cyclic group.

  10. Prove that D8n{D}_{8n} is not isomorphic to D4n×Z2{D}_{4n} \times {Z}_{2} .

  11. Let G={(aij)GLn(F)aij=0 if i>j, and a11=a22==ann}G = \left\{ {\left( {a}_{ij}\right) \in G{L}_{n}\left( F\right) \mid {a}_{ij} = 0\text{ if }i > j,\text{ and }{a}_{11} = {a}_{22} = \cdots = {a}_{nn}}\right\} ,where FF is a field, be the group of upper triangular matrices all of whose diagonal entries are equal. Prove that GD×UG \cong D \times U ,where DD is the group of all nonzero multiples of the identity matrix and UU is the group of upper triangular matrices with 1 ’s down the diagonal.

  12. If AA and BB are normal subgroups of GG such that G/AG/A and G/BG/B are both abelian,prove that G/(AB)G/\left( {A \cap B}\right) is abelian.

  13. Prove that if KK is a normal subgroup of GG then KG{K}^{\prime } \trianglelefteq G .

  14. If KK is a normal subgroup of GG and KK is cyclic,prove that GCG(K){G}^{\prime } \leq {C}_{G}\left( K\right) . [Recall that the automorphism group of a cyclic group is abelian.]

  15. Let K1,K2,,Kn{K}_{1},{K}_{2},\ldots ,{K}_{n} be non-abelian simple groups and let G=K1×K2××KnG = {K}_{1} \times {K}_{2} \times \cdots \times {K}_{n} . Prove that every normal subgroup of GG is of the form GI{G}_{I} for some subset II of {1,2,,n}\{ 1,2,\ldots ,n\} (where GI{G}_{I} is defined in Exercise 2 of Section 1). [If NGN \trianglelefteq G and x=(a1,,an)Nx = \left( {{a}_{1},\ldots ,{a}_{n}}\right) \in N with some ai1{a}_{i} \neq 1 ,then show that there is some giGi{g}_{i} \in {G}_{i} not commuting with ai{a}_{i} . Show [(1,,gi,,1),x]KiN\left\lbrack {\left( {1,\ldots ,{g}_{i},\ldots ,1}\right) ,x}\right\rbrack \in {K}_{i} \cap N and deduce KiN.  {K}_{i} \leq N.\;

  16. A group HH is called perfect if H=H{H}^{\prime } = H (i.e., HH equals its own commutator subgroup).

(a) Prove that every non-abelian simple group is perfect.

(b) Prove that if HH and KK are perfect subgroups of a group GG then H,K\langle H,K\rangle is also perfect. Extend this to show that the subgroup of GG generated by any collection of perfect subgroups is perfect.

(c) Prove that any conjugate of a perfect subgroup is perfect.

(d) Prove that any group GG has a unique maximal perfect subgroup and that this subgroup is normal.

  1. Let H(F)H\left( F\right) be the Heisenberg group over the field FF ,cf. Exercise 11 of Section 1.4. Find an explicit formula for the commutator [X,Y]\left\lbrack {X,Y}\right\rbrack ,where X,YH(F)X,Y \in H\left( F\right) ,and show that the commutator subgroup of H(F)H\left( F\right) equals the center of H(F)H\left( F\right) (cf. Section 2.2,Exercise 14).