- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
我的环境
- 操作系统:CentOS7
- 显卡:RTX3090 两张
- 显卡驱动:550.78
- CUDA版本: 12.4
- 语言环境:Python3.9.19
- 编译器:Jupyter Lab
- 深度学习环境:
- TensorFlow-2.17.0 (GPU版本)
一、前期工作
1. 设置GPU
from tensorflow import keras
from tensorflow.keras import layers,models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
tf.config.set_visible_devices([gpu0],"GPU")
gpus
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU'), PhysicalDevice(name='/physical_device:GPU:1', device_type='GPU')]
2. 导入数据
data_dir = "./data/"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*/*.jpg')))
print("图片总数为:",image_count)
图片总数为: 578
roses = list(data_dir.glob('train/nike/*.jpg'))
PIL.Image.open(str(roses[0]))
二、数据预处理
1. 加载数据
使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中
- tf.keras.preprocessing.image_dataset_from_directory():是 TensorFlow 的 Keras 模块中的一个函数,用于从目录中创建一个图像数据集(dataset)。这个函数可以以更方便的方式加载图像数据,用于训练和评估神经网络模型。
测试集与验证集的关系:
- 验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
- 但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。
- 因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集
batch_size = 32
img_height = 224
img_width = 224
如果准备尝试 categorical_crossentropy损失函数,下面的代码遇到变动哈,变动细节将在下一周博客内公布。
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
"./data/train/",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
Found 502 files belonging to 2 classes.
2024-10-02 19:43:02.432670: I tensorflow/core/common_runtime/gpu/gpu_device.cc:2021] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 21983 MB memory: -> device: 0, name: NVIDIA GeForce RTX 3090, pci bus id: 0000:3b:00.0, compute capability: 8.6
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
"./data/test/",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
Found 76 files belonging to 2 classes.
class_names = train_ds.class_names
print(class_names)
['adidas', 'nike']
2. 可视化数据
plt.figure(figsize=(20, 10))
for images, labels in train_ds.take(1):
for i in range(20):
ax = plt.subplot(5, 10, i + 1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(class_names[labels[i]])
plt.axis("off")
2024-10-02 19:44:06.137769: I tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: OUT_OF_RANGE: End of sequence
for image_batch, labels_batch in train_ds:
print(image_batch.shape)
print(labels_batch.shape)
break
(32, 224, 224, 3)
(32,)
- Image_batch是形状的张量(32,224,224,3)。这是一批形状224x224x3的32张图片(最后一维指的是彩色通道RGB)。
- Label_batch是形状(32,)的张量,这些标签对应32张图片
3. 配置数据集
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
- shuffle() :打乱数据,关于此函数的详细介绍可以参考:zhuanlan.zhihu.com/p/42417456
- prefetch() :预取数据,加速运行
- cache() : 将数据集缓存到内存当中,加速运行
三、构建CNN网络
卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入的形状是 (224, 224, 3)即彩色图像。我们需要在声明第一层时将形状赋值给参数input_shape。
- 网络结构图:
"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995
layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""
model = models.Sequential([
layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3
#layers.AveragePooling2D((2, 2)), # 池化层1,2*2采样
layers.MaxPooling2D((2, 2)), # 池化层1,2*2采样
layers.Conv2D(32, (3, 3), activation='relu'), # 卷积层2,卷积核3*3
#layers.AveragePooling2D((2, 2)), # 池化层2,2*2采样
layers.MaxPooling2D((2, 2)), # 池化层2,2*2采样
#layers.Dropout(0.3),
layers.Conv2D(64, (3, 3), activation='relu'), # 卷积层3,卷积核3*3
layers.Dropout(0.3),
layers.Flatten(), # Flatten层,连接卷积层与全连接层
layers.Dense(128, activation='relu'), # 全连接层,特征进一步提取
layers.Dense(len(class_names)) # 输出层,输出预期结果
])
model.summary() # 打印网络结构
Model: "sequential_7"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ │ rescaling_7 (Rescaling) │ (None, 224, 224, 3) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ conv2d_21 (Conv2D) │ (None, 222, 222, 16) │ 448 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ max_pooling2d_4 (MaxPooling2D) │ (None, 111, 111, 16) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ conv2d_22 (Conv2D) │ (None, 109, 109, 32) │ 4,640 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ max_pooling2d_5 (MaxPooling2D) │ (None, 54, 54, 32) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ conv2d_23 (Conv2D) │ (None, 52, 52, 64) │ 18,496 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ dropout_11 (Dropout) │ (None, 52, 52, 64) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ flatten_7 (Flatten) │ (None, 173056) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ dense_14 (Dense) │ (None, 128) │ 22,151,296 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ dense_15 (Dense) │ (None, 2) │ 258 │ └─────────────────────────────────┴────────────────────────┴───────────────┘
Total params: 22,175,138 (84.59 MB)
Trainable params: 22,175,138 (84.59 MB)
Non-trainable params: 0 (0.00 B)
四、训练模型
在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:
- 损失函数(loss):用于衡量模型在训练期间的准确率。
- 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
- 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
1. 设置动态学习率
ExponentialDecay函数: tf.keras.optimizers.schedules.ExponentialDecay是 TensorFlow 中的一个学习率衰减策略,用于在训练神经网络时动态地降低学习率。学习率衰减是一种常用的技巧,可以帮助优化算法更有效地收敛到全局最小值,从而提高模型的性能。
主要参数:
- initial_learning_rate(初始学习率):初始学习率大小。
- decay_steps(衰减步数):学习率衰减的步数。在经过 decay_steps 步后,学习率将按照指数函数衰减。例如,如果 decay_steps 设置为 10,则每10步衰减一次。
- decay_rate(衰减率):学习率的衰减率。它决定了学习率如何衰减。通常,取值在 0 到 1 之间。
- staircase(阶梯式衰减):一个布尔值,控制学习率的衰减方式。如果设置为 True,则学习率在每个 decay_steps 步之后直接减小,形成阶梯状下降。如果设置为 False,则学习率将连续衰减。
注:这里设置的动态学习率为:指数衰减型(ExponentialDecay)。在每一个epoch开始前,学习率(learning_rate)都将会重置为初始学习率(initial_learning_rate),然后再重新开始衰减。计算公式如下:
learning_rate = initial_learning_rate * decay_rate ^ (step / decay_steps)
学习率大与学习率小的优缺点分析:
学习率大
- 优点: 1、加快学习速率。 2、有助于跳出局部最优值。
- 缺点: 1、导致模型训练不收敛。 2、单单使用大学习率容易导致模型不精确。
学习率小
- 优点: 1、有助于模型收敛、模型细化。 2、提高模型精度。
- 缺点: 1、很难跳出局部最优值。 2、收敛缓慢。
# 设置初始学习率
initial_learning_rate = 0.001
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate,
decay_steps=10, # 敲黑板!!!这里是指 steps,不是指epochs
decay_rate=0.92, # lr经过一次衰减就会变成 decay_rate*lr
staircase=True)
# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
model.compile(optimizer=optimizer,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
2. 保存最佳模型
EarlyStopping()参数说明:
- monitor: 被监测的数据。
- min_delta: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。
- patience: 没有进步的训练轮数,在这之后训练就会被停止。
- verbose: 详细信息模式。
- mode: {auto, min, max} 其中之一。 在 min 模式中, 当被监测的数据停止下降,训练就会停止;在 max 模式中,当被监测的数据停止上升,训练就会停止;在 auto 模式中,方向会自动从被监测的数据的名字中判断出来。
- baseline: 要监控的数量的基准值。 如果模型没有显示基准的改善,训练将停止。
- estore_best_weights: 是否从具有监测数量的最佳值的时期恢复模型权重。 如果为 False,则使用在训练的最后一步获得的模型权重。
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
epochs = 100
# 保存最佳模型参数
checkpointer = ModelCheckpoint('best_model.weights.h5',
monitor='val_accuracy',
verbose=1,
save_best_only=True,
save_weights_only=True)
# 设置早停
earlystopper = EarlyStopping(monitor='val_accuracy',
min_delta=0.001,
patience=20,
verbose=1)
3. 模型训练
history = model.fit(train_ds,
validation_data=val_ds,
epochs=epochs,
callbacks=[checkpointer, earlystopper])
Epoch 1/100
[1m13/16[0m [32m━━━━━━━━━━━━━━━━[0m[37m━━━━[0m [1m2s[0m 795ms/step - accuracy: 0.5011 - loss: 2.8015
Epoch 1: val_accuracy improved from -inf to 0.53947, saving model to best_model.weights.h5
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m20s[0m 891ms/step - accuracy: 0.5004 - loss: 2.5806 - val_accuracy: 0.5395 - val_loss: 0.6970
Epoch 2/100
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 11ms/step - accuracy: 0.5947 - loss: 0.6634
Epoch 2: val_accuracy improved from 0.53947 to 0.63158, saving model to best_model.weights.h5
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m2s[0m 116ms/step - accuracy: 0.5938 - loss: 0.6637 - val_accuracy: 0.6316 - val_loss: 0.6295
Epoch 3/100
[1m14/16[0m [32m━━━━━━━━━━━━━━━━━[0m[37m━━━[0m [1m0s[0m 17ms/step - accuracy: 0.6631 - loss: 0.6086
Epoch 3: val_accuracy improved from 0.63158 to 0.68421, saving model to best_model.weights.h5
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m2s[0m 108ms/step - accuracy: 0.6660 - loss: 0.6072 - val_accuracy: 0.6842 - val_loss: 0.6002
Epoch 4/100
[1m15/16[0m [32m━━━━━━━━━━━━━━━━━━[0m[37m━━[0m [1m0s[0m 17ms/step - accuracy: 0.7586 - loss: 0.5206
Epoch 4: val_accuracy improved from 0.68421 to 0.72368, saving model to best_model.weights.h5
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m2s[0m 100ms/step - accuracy: 0.7617 - loss: 0.5165 - val_accuracy: 0.7237 - val_loss: 0.5158
Epoch 5/100
[1m11/16[0m [32m━━━━━━━━━━━━━[0m[37m━━━━━━━[0m [1m0s[0m 17ms/step - accuracy: 0.8588 - loss: 0.3746
Epoch 5: val_accuracy improved from 0.72368 to 0.73684, saving model to best_model.weights.h5
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m2s[0m 99ms/step - accuracy: 0.8509 - loss: 0.3781 - val_accuracy: 0.7368 - val_loss: 0.4971
Epoch 6/100
[1m11/16[0m [32m━━━━━━━━━━━━━[0m[37m━━━━━━━[0m [1m0s[0m 16ms/step - accuracy: 0.8636 - loss: 0.3280
Epoch 6: val_accuracy did not improve from 0.73684
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 32ms/step - accuracy: 0.8663 - loss: 0.3225 - val_accuracy: 0.7237 - val_loss: 0.4887
Epoch 7/100
[1m14/16[0m [32m━━━━━━━━━━━━━━━━━[0m[37m━━━[0m [1m0s[0m 13ms/step - accuracy: 0.9515 - loss: 0.2058
Epoch 7: val_accuracy improved from 0.73684 to 0.76316, saving model to best_model.weights.h5
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m2s[0m 108ms/step - accuracy: 0.9488 - loss: 0.2074 - val_accuracy: 0.7632 - val_loss: 0.4961
Epoch 8/100
[1m15/16[0m [32m━━━━━━━━━━━━━━━━━━[0m[37m━━[0m [1m0s[0m 12ms/step - accuracy: 0.9493 - loss: 0.1521
Epoch 8: val_accuracy improved from 0.76316 to 0.78947, saving model to best_model.weights.h5
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m2s[0m 97ms/step - accuracy: 0.9484 - loss: 0.1528 - val_accuracy: 0.7895 - val_loss: 0.4980
Epoch 9/100
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 15ms/step - accuracy: 0.9658 - loss: 0.1137
Epoch 9: val_accuracy improved from 0.78947 to 0.80263, saving model to best_model.weights.h5
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m2s[0m 94ms/step - accuracy: 0.9659 - loss: 0.1136 - val_accuracy: 0.8026 - val_loss: 0.4939
Epoch 10/100
[1m14/16[0m [32m━━━━━━━━━━━━━━━━━[0m[37m━━━[0m [1m0s[0m 17ms/step - accuracy: 0.9620 - loss: 0.1061
Epoch 10: val_accuracy did not improve from 0.80263
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 32ms/step - accuracy: 0.9619 - loss: 0.1061 - val_accuracy: 0.7895 - val_loss: 0.5098
Epoch 11/100
[1m13/16[0m [32m━━━━━━━━━━━━━━━━[0m[37m━━━━[0m [1m0s[0m 18ms/step - accuracy: 0.9791 - loss: 0.0875
Epoch 11: val_accuracy did not improve from 0.80263
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 29ms/step - accuracy: 0.9779 - loss: 0.0877 - val_accuracy: 0.7895 - val_loss: 0.5424
Epoch 12/100
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 16ms/step - accuracy: 0.9833 - loss: 0.0730
Epoch 12: val_accuracy improved from 0.80263 to 0.82895, saving model to best_model.weights.h5
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m2s[0m 105ms/step - accuracy: 0.9836 - loss: 0.0724 - val_accuracy: 0.8289 - val_loss: 0.4979
Epoch 13/100
[1m11/16[0m [32m━━━━━━━━━━━━━[0m[37m━━━━━━━[0m [1m0s[0m 17ms/step - accuracy: 0.9913 - loss: 0.0438
Epoch 13: val_accuracy did not improve from 0.82895
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 28ms/step - accuracy: 0.9906 - loss: 0.0452 - val_accuracy: 0.8289 - val_loss: 0.5162
Epoch 14/100
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 15ms/step - accuracy: 0.9919 - loss: 0.0446
Epoch 14: val_accuracy did not improve from 0.82895
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 28ms/step - accuracy: 0.9920 - loss: 0.0443 - val_accuracy: 0.8158 - val_loss: 0.5455
Epoch 15/100
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 16ms/step - accuracy: 0.9955 - loss: 0.0286
Epoch 15: val_accuracy did not improve from 0.82895
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 32ms/step - accuracy: 0.9954 - loss: 0.0288 - val_accuracy: 0.8289 - val_loss: 0.5386
Epoch 16/100
[1m12/16[0m [32m━━━━━━━━━━━━━━━[0m[37m━━━━━[0m [1m0s[0m 15ms/step - accuracy: 0.9991 - loss: 0.0185
Epoch 16: val_accuracy did not improve from 0.82895
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 38ms/step - accuracy: 0.9974 - loss: 0.0214 - val_accuracy: 0.8026 - val_loss: 0.5602
Epoch 17/100
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 16ms/step - accuracy: 0.9991 - loss: 0.0258
Epoch 17: val_accuracy did not improve from 0.82895
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 30ms/step - accuracy: 0.9990 - loss: 0.0258 - val_accuracy: 0.8158 - val_loss: 0.5639
Epoch 18/100
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 16ms/step - accuracy: 0.9999 - loss: 0.0190
Epoch 18: val_accuracy did not improve from 0.82895
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 30ms/step - accuracy: 0.9998 - loss: 0.0192 - val_accuracy: 0.8158 - val_loss: 0.5702
Epoch 19/100
[1m13/16[0m [32m━━━━━━━━━━━━━━━━[0m[37m━━━━[0m [1m0s[0m 20ms/step - accuracy: 0.9982 - loss: 0.0244
Epoch 19: val_accuracy did not improve from 0.82895
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 31ms/step - accuracy: 0.9981 - loss: 0.0233 - val_accuracy: 0.8289 - val_loss: 0.5724
Epoch 20/100
[1m14/16[0m [32m━━━━━━━━━━━━━━━━━[0m[37m━━━[0m [1m0s[0m 17ms/step - accuracy: 1.0000 - loss: 0.0158
Epoch 20: val_accuracy did not improve from 0.82895
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 26ms/step - accuracy: 1.0000 - loss: 0.0160 - val_accuracy: 0.8158 - val_loss: 0.5862
Epoch 21/100
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 15ms/step - accuracy: 1.0000 - loss: 0.0182
Epoch 21: val_accuracy did not improve from 0.82895
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 32ms/step - accuracy: 1.0000 - loss: 0.0181 - val_accuracy: 0.8158 - val_loss: 0.5938
Epoch 22/100
[1m15/16[0m [32m━━━━━━━━━━━━━━━━━━[0m[37m━━[0m [1m0s[0m 16ms/step - accuracy: 1.0000 - loss: 0.0154
Epoch 22: val_accuracy did not improve from 0.82895
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 30ms/step - accuracy: 1.0000 - loss: 0.0154 - val_accuracy: 0.8158 - val_loss: 0.5988
Epoch 23/100
[1m11/16[0m [32m━━━━━━━━━━━━━[0m[37m━━━━━━━[0m [1m0s[0m 17ms/step - accuracy: 1.0000 - loss: 0.0159
Epoch 23: val_accuracy did not improve from 0.82895
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 28ms/step - accuracy: 1.0000 - loss: 0.0153 - val_accuracy: 0.8158 - val_loss: 0.6073
Epoch 24/100
[1m11/16[0m [32m━━━━━━━━━━━━━[0m[37m━━━━━━━[0m [1m0s[0m 17ms/step - accuracy: 1.0000 - loss: 0.0132
Epoch 24: val_accuracy did not improve from 0.82895
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 26ms/step - accuracy: 1.0000 - loss: 0.0132 - val_accuracy: 0.8158 - val_loss: 0.6115
Epoch 25/100
[1m12/16[0m [32m━━━━━━━━━━━━━━━[0m[37m━━━━━[0m [1m0s[0m 15ms/step - accuracy: 1.0000 - loss: 0.0109
Epoch 25: val_accuracy did not improve from 0.82895
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 28ms/step - accuracy: 1.0000 - loss: 0.0111 - val_accuracy: 0.8289 - val_loss: 0.6086
Epoch 26/100
[1m14/16[0m [32m━━━━━━━━━━━━━━━━━[0m[37m━━━[0m [1m0s[0m 18ms/step - accuracy: 1.0000 - loss: 0.0098
Epoch 26: val_accuracy improved from 0.82895 to 0.84211, saving model to best_model.weights.h5
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m2s[0m 111ms/step - accuracy: 1.0000 - loss: 0.0101 - val_accuracy: 0.8421 - val_loss: 0.6128
Epoch 27/100
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 15ms/step - accuracy: 1.0000 - loss: 0.0136
Epoch 27: val_accuracy did not improve from 0.84211
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 32ms/step - accuracy: 1.0000 - loss: 0.0134 - val_accuracy: 0.8289 - val_loss: 0.6071
Epoch 28/100
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 18ms/step - accuracy: 1.0000 - loss: 0.0095
Epoch 28: val_accuracy did not improve from 0.84211
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 32ms/step - accuracy: 1.0000 - loss: 0.0095 - val_accuracy: 0.8158 - val_loss: 0.6175
Epoch 29/100
[1m15/16[0m [32m━━━━━━━━━━━━━━━━━━[0m[37m━━[0m [1m0s[0m 17ms/step - accuracy: 1.0000 - loss: 0.0108
Epoch 29: val_accuracy did not improve from 0.84211
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 30ms/step - accuracy: 1.0000 - loss: 0.0107 - val_accuracy: 0.8158 - val_loss: 0.6151
Epoch 30/100
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 16ms/step - accuracy: 1.0000 - loss: 0.0084
Epoch 30: val_accuracy did not improve from 0.84211
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 33ms/step - accuracy: 1.0000 - loss: 0.0085 - val_accuracy: 0.8289 - val_loss: 0.6145
Epoch 31/100
[1m11/16[0m [32m━━━━━━━━━━━━━[0m[37m━━━━━━━[0m [1m0s[0m 18ms/step - accuracy: 1.0000 - loss: 0.0082
Epoch 31: val_accuracy did not improve from 0.84211
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 30ms/step - accuracy: 1.0000 - loss: 0.0083 - val_accuracy: 0.8289 - val_loss: 0.6181
Epoch 32/100
[1m13/16[0m [32m━━━━━━━━━━━━━━━━[0m[37m━━━━[0m [1m0s[0m 20ms/step - accuracy: 1.0000 - loss: 0.0067
Epoch 32: val_accuracy did not improve from 0.84211
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 31ms/step - accuracy: 1.0000 - loss: 0.0072 - val_accuracy: 0.8289 - val_loss: 0.6211
Epoch 33/100
[1m15/16[0m [32m━━━━━━━━━━━━━━━━━━[0m[37m━━[0m [1m0s[0m 19ms/step - accuracy: 1.0000 - loss: 0.0091
Epoch 33: val_accuracy did not improve from 0.84211
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 35ms/step - accuracy: 1.0000 - loss: 0.0091 - val_accuracy: 0.8289 - val_loss: 0.6219
Epoch 34/100
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 16ms/step - accuracy: 1.0000 - loss: 0.0068
Epoch 34: val_accuracy did not improve from 0.84211
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 32ms/step - accuracy: 1.0000 - loss: 0.0069 - val_accuracy: 0.8158 - val_loss: 0.6241
Epoch 35/100
[1m15/16[0m [32m━━━━━━━━━━━━━━━━━━[0m[37m━━[0m [1m0s[0m 16ms/step - accuracy: 1.0000 - loss: 0.0066
Epoch 35: val_accuracy did not improve from 0.84211
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 27ms/step - accuracy: 1.0000 - loss: 0.0068 - val_accuracy: 0.8158 - val_loss: 0.6247
Epoch 36/100
[1m15/16[0m [32m━━━━━━━━━━━━━━━━━━[0m[37m━━[0m [1m0s[0m 16ms/step - accuracy: 1.0000 - loss: 0.0082
Epoch 36: val_accuracy did not improve from 0.84211
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 32ms/step - accuracy: 1.0000 - loss: 0.0082 - val_accuracy: 0.8158 - val_loss: 0.6237
Epoch 37/100
[1m13/16[0m [32m━━━━━━━━━━━━━━━━[0m[37m━━━━[0m [1m0s[0m 20ms/step - accuracy: 1.0000 - loss: 0.0083
Epoch 37: val_accuracy did not improve from 0.84211
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 36ms/step - accuracy: 1.0000 - loss: 0.0083 - val_accuracy: 0.8289 - val_loss: 0.6238
Epoch 38/100
[1m11/16[0m [32m━━━━━━━━━━━━━[0m[37m━━━━━━━[0m [1m0s[0m 18ms/step - accuracy: 1.0000 - loss: 0.0070
Epoch 38: val_accuracy did not improve from 0.84211
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 30ms/step - accuracy: 1.0000 - loss: 0.0076 - val_accuracy: 0.8289 - val_loss: 0.6234
Epoch 39/100
[1m15/16[0m [32m━━━━━━━━━━━━━━━━━━[0m[37m━━[0m [1m0s[0m 16ms/step - accuracy: 1.0000 - loss: 0.0122
Epoch 39: val_accuracy did not improve from 0.84211
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 28ms/step - accuracy: 1.0000 - loss: 0.0117 - val_accuracy: 0.8289 - val_loss: 0.6225
Epoch 40/100
[1m11/16[0m [32m━━━━━━━━━━━━━[0m[37m━━━━━━━[0m [1m0s[0m 17ms/step - accuracy: 1.0000 - loss: 0.0053
Epoch 40: val_accuracy did not improve from 0.84211
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 27ms/step - accuracy: 1.0000 - loss: 0.0062 - val_accuracy: 0.8289 - val_loss: 0.6235
Epoch 41/100
[1m15/16[0m [32m━━━━━━━━━━━━━━━━━━[0m[37m━━[0m [1m0s[0m 15ms/step - accuracy: 1.0000 - loss: 0.0125
Epoch 41: val_accuracy did not improve from 0.84211
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 28ms/step - accuracy: 1.0000 - loss: 0.0120 - val_accuracy: 0.8289 - val_loss: 0.6246
Epoch 42/100
[1m12/16[0m [32m━━━━━━━━━━━━━━━[0m[37m━━━━━[0m [1m0s[0m 15ms/step - accuracy: 1.0000 - loss: 0.0072
Epoch 42: val_accuracy did not improve from 0.84211
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 27ms/step - accuracy: 1.0000 - loss: 0.0075 - val_accuracy: 0.8289 - val_loss: 0.6251
Epoch 43/100
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 15ms/step - accuracy: 1.0000 - loss: 0.0084
Epoch 43: val_accuracy did not improve from 0.84211
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 37ms/step - accuracy: 1.0000 - loss: 0.0084 - val_accuracy: 0.8289 - val_loss: 0.6240
Epoch 44/100
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 16ms/step - accuracy: 1.0000 - loss: 0.0067
Epoch 44: val_accuracy did not improve from 0.84211
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 26ms/step - accuracy: 1.0000 - loss: 0.0068 - val_accuracy: 0.8289 - val_loss: 0.6241
Epoch 45/100
[1m12/16[0m [32m━━━━━━━━━━━━━━━[0m[37m━━━━━[0m [1m0s[0m 16ms/step - accuracy: 1.0000 - loss: 0.0054
Epoch 45: val_accuracy did not improve from 0.84211
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 30ms/step - accuracy: 1.0000 - loss: 0.0061 - val_accuracy: 0.8289 - val_loss: 0.6241
Epoch 46/100
[1m11/16[0m [32m━━━━━━━━━━━━━[0m[37m━━━━━━━[0m [1m0s[0m 18ms/step - accuracy: 1.0000 - loss: 0.0097
Epoch 46: val_accuracy did not improve from 0.84211
[1m16/16[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 30ms/step - accuracy: 1.0000 - loss: 0.0096 - val_accuracy: 0.8289 - val_loss: 0.6244
Epoch 46: early stopping
五、模型评估
1. Loss与Accuracy图
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(len(loss))
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
2. 图片预测
# 加载效果最好的模型权重
model.load_weights('best_model.weights.h5')
from PIL import Image
import numpy as np
img = Image.open("./data/test/nike/1.jpg") #这里选择你需要预测的图片
image = tf.image.resize(img, [img_height, img_width])
img_array = tf.expand_dims(image, 0) #/255.0 # 记得做归一化处理(与训练集处理方式保持一致)
predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])
[1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 775ms/step
预测结果为: adidas
六、总结
- 模型中池化层使用MaxPooling的效果比AveragePooling好
- 模型中使用一次dropout的效果比使用两次好