.\YOLO-World\configs\segmentation\yolo_world_seg_l_dual_vlpan_2e-4_80e_8gpus_seghead_finetune_lvis.py
_base_ = (
'../../third_party/mmyolo/configs/yolov8/yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco.py'
)
custom_imports = dict(imports=['yolo_world'], allow_failed_imports=False)
num_classes = 1203
num_training_classes = 80
max_epochs = 80
close_mosaic_epochs = 10
save_epoch_intervals = 5
text_channels = 512
neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2]
neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32]
base_lr = 2e-4
weight_decay = 0.05
train_batch_size_per_gpu = 8
load_from = 'pretrained_models/yolo_world_l_clip_base_dual_vlpan_2e-3adamw_32xb16_100e_o365_goldg_train_pretrained-0e566235.pth'
persistent_workers = False
downsample_ratio = 4
mask_overlap = False
use_mask2refine = True
max_aspect_ratio = 100
min_area_ratio = 0.01
model = dict(
type='YOLOWorldDetector',
mm_neck=True,
num_train_classes=num_training_classes,
num_test_classes=num_classes,
data_preprocessor=dict(type='YOLOWDetDataPreprocessor'),
backbone=dict(
_delete_=True,
type='MultiModalYOLOBackbone',
image_model={{_base_.model.backbone}},
frozen_stages=4,
text_model=dict(
type='HuggingCLIPLanguageBackbone',
model_name='openai/clip-vit-base-patch32',
frozen_modules=['all'])),
neck=dict(type='YOLOWorldDualPAFPN',
freeze_all=True,
guide_channels=text_channels,
embed_channels=neck_embed_channels,
num_heads=neck_num_heads,
block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv'),
text_enhancder=dict(type='ImagePoolingAttentionModule',
embed_channels=256,
num_heads=8)),
bbox_head=dict(type='YOLOWorldSegHead',
head_module=dict(type='YOLOWorldSegHeadModule',
embed_dims=text_channels,
num_classes=num_training_classes,
mask_channels=32,
proto_channels=256,
freeze_bbox=True),
mask_overlap=mask_overlap,
loss_mask=dict(type='mmdet.CrossEntropyLoss',
use_sigmoid=True,
reduction='none'),
loss_mask_weight=1.0),
train_cfg=dict(assigner=dict(num_classes=num_training_classes)),
test_cfg=dict(mask_thr_binary=0.5, fast_test=True))
pre_transform = [
dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
dict(type='LoadAnnotations',
with_bbox=True,
with_mask=True,
mask2bbox=True)
]
last_transform = [
dict(type='mmdet.Albu',
transforms=_base_.albu_train_transforms,
bbox_params=dict(type='BboxParams',
format='pascal_voc',
label_fields=['gt_bboxes_labels',
'gt_ignore_flags']),
keymap={
'img': 'image',
'gt_bboxes': 'bboxes'
}),
dict(type='YOLOv5HSVRandomAug'),
dict(type='mmdet.RandomFlip', prob=0.5),
dict(type='Polygon2Mask',
downsample_ratio=downsample_ratio,
mask_overlap=mask_overlap)
]
text_transform = [
dict(type='RandomLoadText',
num_neg_samples=(num_classes, num_classes),
max_num_samples=num_training_classes,
padding_to_max=True,
padding_value=''),
dict(type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
'flip_direction', 'texts'))
]
mosaic_affine_transform = [
dict(type='MultiModalMosaic',
img_scale=_base_.img_scale,
pad_val=114.0,
pre_transform=pre_transform),
dict(type='YOLOv5CopyPaste', prob=_base_.copypaste_prob),
dict(
type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_shear_degree=0.0,
max_aspect_ratio=100.,
scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2),
border_val=(114, 114, 114),
min_area_ratio=_base_.min_area_ratio,
use_mask_refine=True)
]
train_pipeline = [
*pre_transform, *mosaic_affine_transform,
]
dict(type='YOLOv5MultiModalMixUp',
prob=_base_.mixup_prob,
pre_transform=[*pre_transform, *mosaic_affine_transform]),
*last_transform, *text_transform
_train_pipeline_stage2 = [
*pre_transform,
dict(type='YOLOv5KeepRatioResize', scale=_base_.img_scale),
dict(type='LetterResize',
scale=_base_.img_scale,
allow_scale_up=True,
pad_val=dict(img=114.0)),
dict(type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_shear_degree=0.0,
scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
max_aspect_ratio=_base_.max_aspect_ratio,
border_val=(114, 114, 114),
min_area_ratio=min_area_ratio,
use_mask_refine=use_mask2refine),
*last_transform
]
train_pipeline_stage2 = [*_train_pipeline_stage2, *text_transform]
coco_train_dataset = dict(
_delete_=True,
type='MultiModalDataset',
dataset=dict(type='YOLOv5LVISV1Dataset',
data_root='data/coco',
ann_file='lvis/lvis_v1_train_base.json',
data_prefix=dict(img=''),
filter_cfg=dict(filter_empty_gt=True, min_size=32)),
class_text_path='data/captions/lvis_v1_base_class_captions.json',
pipeline=train_pipeline)
train_dataloader = dict(persistent_workers=persistent_workers,
batch_size=train_batch_size_per_gpu,
collate_fn=dict(type='yolow_collate'),
dataset=coco_train_dataset)
test_pipeline = [
*_base_.test_pipeline[:-1],
dict(type='LoadText'),
dict(type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'pad_param', 'texts'))
]
default_hooks = dict(param_scheduler=dict(scheduler_type='linear',
lr_factor=0.01,
max_epochs=max_epochs),
checkpoint=dict(max_keep_ckpts=-1,
save_best=None,
interval=save_epoch_intervals))
custom_hooks = [
dict(type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0001,
update_buffers=True,
strict_load=False,
priority=49),
dict(type='mmdet.PipelineSwitchHook',
switch_epoch=max_epochs - close_mosaic_epochs,
switch_pipeline=train_pipeline_stage2)
]
train_cfg = dict(max_epochs=max_epochs,
val_interval=5,
dynamic_intervals=[((max_epochs - close_mosaic_epochs),
_base_.val_interval_stage2)])
optim_wrapper = dict(optimizer=dict(
_delete_=True,
type='AdamW',
lr=base_lr,
weight_decay=weight_decay,
batch_size_per_gpu=train_batch_size_per_gpu),
paramwise_cfg=dict(bias_decay_mult=0.0,
norm_decay_mult=0.0,
custom_keys={
'backbone.text_model':
dict(lr_mult=0.01),
'logit_scale':
dict(weight_decay=0.0),
'neck':
dict(lr_mult=0.0),
'head.head_module.reg_preds':
dict(lr_mult=0.0),
'head.head_module.cls_preds':
dict(lr_mult=0.0),
'head.head_module.cls_contrasts':
dict(lr_mult=0.0)
}),
constructor='YOLOWv5OptimizerConstructor')
coco_val_dataset = dict(
_delete_=True,
type='MultiModalDataset',
dataset=dict(type='YOLOv5LVISV1Dataset',
data_root='data/coco/',
test_mode=True,
ann_file='lvis/lvis_v1_val.json',
data_prefix=dict(img=''),
batch_shapes_cfg=None),
class_text_path='data/captions/lvis_v1_class_captions.json',
pipeline=test_pipeline)
val_dataloader = dict(dataset=coco_val_dataset)
test_dataloader = val_dataloader
val_evaluator = dict(type='mmdet.LVISMetric',
ann_file='data/coco/lvis/lvis_v1_val.json',
metric=['bbox', 'segm'])
test_evaluator = val_evaluator
find_unused_parameters = True
.\YOLO-World\configs\segmentation\yolo_world_seg_m_dual_vlpan_2e-4_80e_8gpus_allmodules_finetune_lvis.py
_base_ = (
'../../third_party/mmyolo/configs/yolov8/yolov8_m_mask-refine_syncbn_fast_8xb16-500e_coco.py'
)
custom_imports = dict(imports=['yolo_world'], allow_failed_imports=False)
num_classes = 1203
num_training_classes = 80
max_epochs = 80
close_mosaic_epochs = 10
save_epoch_intervals = 5
text_channels = 512
neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2]
neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32]
base_lr = 2e-4
weight_decay = 0.05
train_batch_size_per_gpu = 8
load_from = 'pretrained_models/yolo_world_m_clip_base_dual_vlpan_2e-3adamw_32xb16_100e_o365_goldg_train_pretrained-2b7bd1be.pth'
persistent_workers = False
downsample_ratio = 4
mask_overlap = False
use_mask2refine = True
max_aspect_ratio = 100
min_area_ratio = 0.01
model = dict(
type='YOLOWorldDetector',
mm_neck=True,
num_train_classes=num_training_classes,
num_test_classes=num_classes,
data_preprocessor=dict(type='YOLOWDetDataPreprocessor'),
backbone=dict(
_delete_=True,
type='MultiModalYOLOBackbone',
image_model={{_base_.model.backbone}},
text_model=dict(
type='HuggingCLIPLanguageBackbone',
model_name='openai/clip-vit-base-patch32',
frozen_modules=[])),
neck=dict(type='YOLOWorldDualPAFPN',
guide_channels=text_channels,
embed_channels=neck_embed_channels,
num_heads=neck_num_heads,
block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv'),
text_enhancder=dict(type='ImagePoolingAttentionModule',
embed_channels=256,
num_heads=8)),
bbox_head=dict(type='YOLOWorldSegHead',
head_module=dict(type='YOLOWorldSegHeadModule',
embed_dims=text_channels,
num_classes=num_training_classes,
mask_channels=32,
proto_channels=256),
mask_overlap=mask_overlap,
loss_mask=dict(type='mmdet.CrossEntropyLoss',
use_sigmoid=True,
reduction='none'),
loss_mask_weight=1.0),
train_cfg=dict(assigner=dict(num_classes=num_training_classes)),
test_cfg=dict(mask_thr_binary=0.5, fast_test=True))
pre_transform = [
dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
dict(type='LoadAnnotations',
with_bbox=True,
with_mask=True,
mask2bbox=True)
]
last_transform = [
dict(type='mmdet.Albu',
transforms=_base_.albu_train_transforms,
bbox_params=dict(type='BboxParams',
format='pascal_voc',
label_fields=['gt_bboxes_labels',
'gt_ignore_flags']),
keymap={
'img': 'image',
'gt_bboxes': 'bboxes'
}),
dict(type='YOLOv5HSVRandomAug'),
dict(type='mmdet.RandomFlip', prob=0.5),
dict(type='Polygon2Mask',
downsample_ratio=downsample_ratio,
mask_overlap=mask_overlap),
]
text_transform = [
dict(type='RandomLoadText',
num_neg_samples=(num_classes, num_classes),
max_num_samples=num_training_classes,
padding_to_max=True,
padding_value=''),
dict(type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
'flip_direction', 'texts'))
]
mosaic_affine_transform = [
dict(type='MultiModalMosaic',
img_scale=_base_.img_scale,
pad_val=114.0,
pre_transform=pre_transform),
dict(type='YOLOv5CopyPaste', prob=_base_.copypaste_prob),
dict(
type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_shear_degree=0.0,
max_aspect_ratio=100.,
scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2),
border_val=(114, 114, 114),
min_area_ratio=_base_.min_area_ratio,
use_mask_refine=True)
]
train_pipeline = [
*pre_transform, *mosaic_affine_transform,
dict(type='YOLOv5MultiModalMixUp',
prob=_base_.mixup_prob,
pre_transform=[*pre_transform, *mosaic_affine_transform]),
*last_transform, *text_transform
_train_pipeline_stage2 = [
*pre_transform,
dict(type='YOLOv5KeepRatioResize', scale=_base_.img_scale),
dict(type='LetterResize',
scale=_base_.img_scale,
allow_scale_up=True,
pad_val=dict(img=114.0)),
dict(type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_shear_degree=0.0,
scaling_ratio_range=(1 - _base_.affine_scale,
1 + _base_.affine_scale),
max_aspect_ratio=_base_.max_aspect_ratio,
border_val=(114, 114, 114),
min_area_ratio=min_area_ratio,
use_mask_refine=use_mask2refine), *last_transform
]
train_pipeline_stage2 = [*_train_pipeline_stage2, *text_transform]
coco_train_dataset = dict(
_delete_=True,
type='MultiModalDataset',
dataset=dict(type='YOLOv5LVISV1Dataset',
data_root='data/coco',
ann_file='lvis/lvis_v1_train_base.json',
data_prefix=dict(img=''),
filter_cfg=dict(filter_empty_gt=True, min_size=32)),
class_text_path='data/captions/lvis_v1_base_class_captions.json',
pipeline=train_pipeline)
train_dataloader = dict(persistent_workers=persistent_workers,
batch_size=train_batch_size_per_gpu,
collate_fn=dict(type='yolow_collate'),
dataset=coco_train_dataset)
test_pipeline = [
*_base_.test_pipeline[:-1],
dict(type='LoadText'),
dict(type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'pad_param', 'texts'))
]
default_hooks = dict(param_scheduler=dict(scheduler_type='linear',
lr_factor=0.01,
max_epochs=max_epochs),
checkpoint=dict(max_keep_ckpts=-1,
save_best=None,
interval=save_epoch_intervals))
custom_hooks = [
dict(type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0001,
update_buffers=True,
strict_load=False,
priority=49),
dict(type='mmdet.PipelineSwitchHook',
switch_epoch=max_epochs - close_mosaic_epochs,
switch_pipeline=train_pipeline_stage2)
]
train_cfg = dict(max_epochs=max_epochs,
val_interval=5,
dynamic_intervals=[((max_epochs - close_mosaic_epochs),
_base_.val_interval_stage2)])
optim_wrapper = dict(optimizer=dict(
_delete_=True,
type='AdamW',
lr=base_lr,
weight_decay=weight_decay,
batch_size_per_gpu=train_batch_size_per_gpu),
paramwise_cfg=dict(bias_decay_mult=0.0,
norm_decay_mult=0.0,
custom_keys={
'backbone.text_model':
dict(lr_mult=0.01),
'logit_scale':
dict(weight_decay=0.0)
}),
constructor='YOLOWv5OptimizerConstructor')
coco_val_dataset = dict(
_delete_=True,
type='MultiModalDataset',
dataset=dict(type='YOLOv5LVISV1Dataset',
data_root='data/coco/',
test_mode=True,
ann_file='lvis/lvis_v1_val.json',
data_prefix=dict(img=''),
batch_shapes_cfg=None),
class_text_path='data/captions/lvis_v1_class_captions.json',
pipeline=test_pipeline)
val_dataloader = dict(dataset=coco_val_dataset)
test_dataloader = val_dataloader
val_evaluator = dict(type='mmdet.LVISMetric',
ann_file='data/coco/lvis/lvis_v1_val.json',
metric=['bbox', 'segm'])
test_evaluator = val_evaluator
find_unused_parameters = True
.\YOLO-World\configs\segmentation\yolo_world_seg_m_dual_vlpan_2e-4_80e_8gpus_seghead_finetune_lvis.py
_base_ = (
'../../third_party/mmyolo/configs/yolov8/yolov8_m_mask-refine_syncbn_fast_8xb16-500e_coco.py'
)
custom_imports = dict(imports=['yolo_world'], allow_failed_imports=False)
num_classes = 1203
num_training_classes = 80
max_epochs = 80
close_mosaic_epochs = 10
save_epoch_intervals = 5
text_channels = 512
neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2]
neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32]
base_lr = 2e-4
weight_decay = 0.05
train_batch_size_per_gpu = 8
load_from = 'pretrained_models/yolo_world_m_clip_base_dual_vlpan_2e-3adamw_32xb16_100e_o365_goldg_train_pretrained-2b7bd1be.pth'
persistent_workers = False
downsample_ratio = 4
mask_overlap = False
use_mask2refine = True
max_aspect_ratio = 100
min_area_ratio = 0.01
model = dict(
type='YOLOWorldDetector',
mm_neck=True,
num_train_classes=num_training_classes,
num_test_classes=num_classes,
data_preprocessor=dict(type='YOLOWDetDataPreprocessor'),
backbone=dict(
_delete_=True,
type='MultiModalYOLOBackbone',
image_model={{_base_.model.backbone}},
frozen_stages=4,
text_model=dict(
type='HuggingCLIPLanguageBackbone',
model_name='openai/clip-vit-base-patch32',
frozen_modules=['all'])),
neck=dict(type='YOLOWorldDualPAFPN',
freeze_all=True,
guide_channels=text_channels,
embed_channels=neck_embed_channels,
num_heads=neck_num_heads,
block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv'),
text_enhancder=dict(type='ImagePoolingAttentionModule',
embed_channels=256,
num_heads=8)),
bbox_head=dict(type='YOLOWorldSegHead',
head_module=dict(type='YOLOWorldSegHeadModule',
embed_dims=text_channels,
num_classes=num_training_classes,
mask_channels=32,
proto_channels=256,
freeze_bbox=True),
mask_overlap=mask_overlap,
loss_mask=dict(type='mmdet.CrossEntropyLoss',
use_sigmoid=True,
reduction='none'),
loss_mask_weight=1.0),
train_cfg=dict(assigner=dict(num_classes=num_training_classes)),
test_cfg=dict(mask_thr_binary=0.5, fast_test=True))
pre_transform = [
dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
dict(type='LoadAnnotations',
with_bbox=True,
with_mask=True,
mask2bbox=True)
]
last_transform = [
dict(type='mmdet.Albu',
transforms=_base_.albu_train_transforms,
bbox_params=dict(type='BboxParams',
format='pascal_voc',
label_fields=['gt_bboxes_labels',
'gt_ignore_flags']),
keymap={
'img': 'image',
'gt_bboxes': 'bboxes'
}),
dict(type='YOLOv5HSVRandomAug'),
dict(type='mmdet.RandomFlip', prob=0.5),
dict(type='Polygon2Mask',
downsample_ratio=downsample_ratio,
mask_overlap=mask_overlap),
]
text_transform = [
dict(type='RandomLoadText',
num_neg_samples=(num_classes, num_classes),
max_num_samples=num_training_classes,
padding_to_max=True,
padding_value=''),
dict(type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
'flip_direction', 'texts'))
]
mosaic_affine_transform = [
dict(type='MultiModalMosaic',
img_scale=_base_.img_scale,
pad_val=114.0,
pre_transform=pre_transform),
dict(type='YOLOv5CopyPaste', prob=_base_.copypaste_prob),
dict(
type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_shear_degree=0.0,
max_aspect_ratio=100.,
scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2),
border_val=(114, 114, 114),
min_area_ratio=_base_.min_area_ratio,
use_mask_refine=True)
]
train_pipeline = [
*pre_transform, *mosaic_affine_transform,
dict(type='YOLOv5MultiModalMixUp',
prob=_base_.mixup_prob,
pre_transform=[*pre_transform, *mosaic_affine_transform]),
*last_transform, *text_transform
_train_pipeline_stage2 = [
*pre_transform,
dict(type='YOLOv5KeepRatioResize', scale=_base_.img_scale),
dict(type='LetterResize',
scale=_base_.img_scale,
allow_scale_up=True,
pad_val=dict(img=114.0)),
dict(type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_shear_degree=0.0,
scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
max_aspect_ratio=_base_.max_aspect_ratio,
border_val=(114, 114, 114),
min_area_ratio=min_area_ratio,
use_mask_refine=use_mask2refine),
*last_transform
]
train_pipeline_stage2 = [*_train_pipeline_stage2, *text_transform]
coco_train_dataset = dict(
_delete_=True,
type='MultiModalDataset',
dataset=dict(type='YOLOv5LVISV1Dataset',
data_root='data/coco',
ann_file='lvis/lvis_v1_train_base.json',
data_prefix=dict(img=''),
filter_cfg=dict(filter_empty_gt=True, min_size=32)),
class_text_path='data/captions/lvis_v1_base_class_captions.json',
pipeline=train_pipeline)
train_dataloader = dict(persistent_workers=persistent_workers,
batch_size=train_batch_size_per_gpu,
collate_fn=dict(type='yolow_collate'),
dataset=coco_train_dataset)
test_pipeline = [
*_base_.test_pipeline[:-1],
dict(type='LoadText'),
dict(type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'pad_param', 'texts'))
]
default_hooks = dict(param_scheduler=dict(scheduler_type='linear',
lr_factor=0.01,
max_epochs=max_epochs),
checkpoint=dict(max_keep_ckpts=-1,
save_best=None,
interval=save_epoch_intervals))
custom_hooks = [
dict(type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0001,
update_buffers=True,
strict_load=False,
priority=49),
dict(type='mmdet.PipelineSwitchHook',
switch_epoch=max_epochs - close_mosaic_epochs,
switch_pipeline=train_pipeline_stage2)
]
train_cfg = dict(max_epochs=max_epochs,
val_interval=5,
dynamic_intervals=[((max_epochs - close_mosaic_epochs),
_base_.val_interval_stage2)])
optim_wrapper = dict(optimizer=dict(
_delete_=True,
type='AdamW',
lr=base_lr,
weight_decay=weight_decay,
batch_size_per_gpu=train_batch_size_per_gpu),
paramwise_cfg=dict(bias_decay_mult=0.0,
norm_decay_mult=0.0,
custom_keys={
'backbone.text_model':
dict(lr_mult=0.01),
'logit_scale':
dict(weight_decay=0.0),
'neck':
dict(lr_mult=0.0),
'head.head_module.reg_preds':
dict(lr_mult=0.0),
'head.head_module.cls_preds':
dict(lr_mult=0.0),
'head.head_module.cls_contrasts':
dict(lr_mult=0.0)
}),
constructor='YOLOWv5OptimizerConstructor')
coco_val_dataset = dict(
_delete_=True,
type='MultiModalDataset',
dataset=dict(type='YOLOv5LVISV1Dataset',
data_root='data/coco/',
test_mode=True,
ann_file='lvis/lvis_v1_val.json',
data_prefix=dict(img=''),
batch_shapes_cfg=None),
class_text_path='data/captions/lvis_v1_class_captions.json',
pipeline=test_pipeline)
val_dataloader = dict(dataset=coco_val_dataset)
test_dataloader = val_dataloader
val_evaluator = dict(type='mmdet.LVISMetric',
ann_file='data/coco/lvis/lvis_v1_val.json',
metric=['bbox', 'segm'])
test_evaluator = val_evaluator
find_unused_parameters = True
.\YOLO-World\demo.py
import argparse
import os.path as osp
from functools import partial
import cv2
import torch
import gradio as gr
import numpy as np
import supervision as sv
from PIL import Image
from torchvision.ops import nms
from mmengine.config import Config, DictAction
from mmengine.runner import Runner
from mmengine.runner.amp import autocast
from mmengine.dataset import Compose
from mmdet.datasets import CocoDataset
from mmyolo.registry import RUNNERS
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator()
LABEL_ANNOTATOR = sv.LabelAnnotator()
def parse_args():
parser = argparse.ArgumentParser(description='YOLO-World Demo')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--work-dir',
help='the directory to save the file containing evaluation metrics')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def run_image(runner,
image,
text,
max_num_boxes,
score_thr,
nms_thr,
image_path='./work_dirs/demo.png'):
image.save(image_path)
texts = [[t.strip()] for t in text.split(',')] + [[' ']]
data_info = dict(img_id=0, img_path=image_path, texts=texts)
data_info = runner.pipeline(data_info)
data_batch = dict(inputs=data_info['inputs'].unsqueeze(0),
data_samples=[data_info['data_samples']])
with autocast(enabled=False), torch.no_grad():
output = runner.model.test_step(data_batch)[0]
pred_instances = output.pred_instances
keep = nms(pred_instances.bboxes, pred_instances.scores, iou_threshold=nms_thr)
pred_instances = pred_instances[keep]
pred_instances = pred_instances[pred_instances.scores.float() > score_thr]
if len(pred_instances.scores) > max_num_boxes:
indices = pred_instances.scores.float().topk(max_num_boxes)[1]
pred_instances = pred_instances[indices]
pred_instances = pred_instances.cpu().numpy()
detections = sv.Detections(
xyxy=pred_instances['bboxes'],
class_id=pred_instances['labels'],
confidence=pred_instances['scores']
)
labels = [
f"{texts[class_id][0]} {confidence:0.2f}"
for class_id, confidence
in zip(detections.class_id, detections.confidence)
]
image = np.array(image)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
image = BOUNDING_BOX_ANNOTATOR.annotate(image, detections)
image = LABEL_ANNOTATOR.annotate(image, detections, labels=labels)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = Image.fromarray(image)
return image
def demo(runner, args):
if __name__ == '__main__':
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
if args.work_dir is not None:
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0])
cfg.load_from = args.checkpoint
if 'runner_type' not in cfg:
runner = Runner.from_cfg(cfg)
else:
runner = RUNNERS.build(cfg)
runner.call_hook('before_run')
runner.load_or_resume()
pipeline = cfg.test_dataloader.dataset.pipeline
runner.pipeline = Compose(pipeline)
runner.model.eval()
demo(runner, args)
.\YOLO-World\deploy\deploy.py
import argparse
import logging
import os
import os.path as osp
from functools import partial
import mmengine
import torch.multiprocessing as mp
from torch.multiprocessing import Process, set_start_method
from mmdeploy.apis import (create_calib_input_data, extract_model,
get_predefined_partition_cfg, torch2onnx,
torch2torchscript, visualize_model)
from mmdeploy.apis.core import PIPELINE_MANAGER
from mmdeploy.apis.utils import to_backend
from mmdeploy.backend.sdk.export_info import export2SDK
from mmdeploy.utils import (IR, Backend, get_backend, get_calib_filename,
get_ir_config, get_partition_config,
get_root_logger, load_config, target_wrapper)
def parse_args():
parser = argparse.ArgumentParser(description='Export model to backends.')
parser.add_argument('deploy_cfg', help='deploy config path')
parser.add_argument('model_cfg', help='model config path')
parser.add_argument('checkpoint', help='model checkpoint path')
parser.add_argument('img', help='image used to convert model model')
parser.add_argument(
'--test-img',
default=None,
type=str,
nargs='+',
help='image used to test model')
parser.add_argument(
'--work-dir',
default=os.getcwd(),
help='the dir to save logs and models')
parser.add_argument(
'--calib-dataset-cfg',
help='dataset config path used to calibrate in int8 mode. If not \
specified, it will use "val" dataset in model config instead.',
default=None)
parser.add_argument(
'--device', help='device used for conversion', default='cpu')
parser.add_argument(
'--log-level',
help='set log level',
default='INFO',
choices=list(logging._nameToLevel.keys()))
parser.add_argument(
'--show', action='store_true', help='Show detection outputs')
parser.add_argument(
'--dump-info', action='store_true', help='Output information for SDK')
parser.add_argument(
'--quant-image-dir',
default=None,
help='Image directory for quantize model.')
parser.add_argument(
'--quant', action='store_true', help='Quantize model to low bit.')
parser.add_argument(
'--uri',
default='192.168.1.1:60000',
help='Remote ipv4:port or ipv6:port for inference on edge device.')
args = parser.parse_args()
return args
def create_process(name, target, args, kwargs, ret_value=None):
logger = get_root_logger()
logger.info(f'{name} start.')
log_level = logger.level
wrap_func = partial(target_wrapper, target, log_level, ret_value)
process = Process(target=wrap_func, args=args, kwargs=kwargs)
process.start()
process.join()
if ret_value is not None:
if ret_value.value != 0:
logger.error(f'{name} failed.')
exit(1)
else:
logger.info(f'{name} success.')
def torch2ir(ir_type: IR):
"""Return the conversion function from torch to the intermediate
representation.
Args:
ir_type (IR): The type of the intermediate representation.
"""
if ir_type == IR.ONNX:
return torch2onnx
elif ir_type == IR.TORCHSCRIPT:
return torch2torchscript
else:
raise KeyError(f'Unexpected IR type {ir_type}')
def main():
args = parse_args()
set_start_method('spawn', force=True)
logger = get_root_logger()
log_level = logging.getLevelName(args.log_level)
logger.setLevel(log_level)
pipeline_funcs = [
torch2onnx, torch2torchscript, extract_model, create_calib_input_data
]
PIPELINE_MANAGER.enable_multiprocess(True, pipeline_funcs)
PIPELINE_MANAGER.set_log_level(log_level, pipeline_funcs)
deploy_cfg_path = args.deploy_cfg
model_cfg_path = args.model_cfg
checkpoint_path = args.checkpoint
quant = args.quant
quant_image_dir = args.quant_image_dir
deploy_cfg, model_cfg = load_config(deploy_cfg_path, model_cfg_path)
mmengine.mkdir_or_exist(osp.abspath(args.work_dir))
if args.dump_info:
export2SDK(
deploy_cfg,
model_cfg,
args.work_dir,
pth=checkpoint_path,
device=args.device)
ret_value = mp.Value('d', 0, lock=False)
ir_config = get_ir_config(deploy_cfg)
ir_save_file = ir_config['save_file']
ir_type = IR.get(ir_config['type'])
torch2ir(ir_type)(
args.img,
args.work_dir,
ir_save_file,
deploy_cfg_path,
model_cfg_path,
checkpoint_path,
device=args.device)
ir_files = [osp.join(args.work_dir, ir_save_file)]
partition_cfgs = get_partition_config(deploy_cfg)
if partition_cfgs is not None:
if 'partition_cfg' in partition_cfgs:
partition_cfgs = partition_cfgs.get('partition_cfg', None)
else:
assert 'type' in partition_cfgs
partition_cfgs = get_predefined_partition_cfg(
deploy_cfg, partition_cfgs['type'])
origin_ir_file = ir_files[0]
ir_files = []
for partition_cfg in partition_cfgs:
save_file = partition_cfg['save_file']
save_path = osp.join(args.work_dir, save_file)
start = partition_cfg['start']
end = partition_cfg['end']
dynamic_axes = partition_cfg.get('dynamic_axes', None)
extract_model(
origin_ir_file,
start,
end,
dynamic_axes=dynamic_axes,
save_file=save_path)
ir_files.append(save_path)
calib_filename = get_calib_filename(deploy_cfg)
if calib_filename is not None:
calib_path = osp.join(args.work_dir, calib_filename)
create_calib_input_data(
calib_path,
deploy_cfg_path,
model_cfg_path,
checkpoint_path,
dataset_cfg=args.calib_dataset_cfg,
dataset_type='val',
device=args.device)
backend_files = ir_files
backend = get_backend(deploy_cfg)
if backend == Backend.RKNN:
import tempfile
from mmdeploy.utils import (get_common_config, get_normalization,
get_quantization_config,
get_rknn_quantization)
quantization_cfg = get_quantization_config(deploy_cfg)
common_params = get_common_config(deploy_cfg)
if get_rknn_quantization(deploy_cfg) is True:
transform = get_normalization(model_cfg)
common_params.update(
dict(
mean_values=[transform['mean']],
std_values=[transform['std']]))
dataset_file = tempfile.NamedTemporaryFile(suffix='.txt').name
with open(dataset_file, 'w') as f:
f.writelines([osp.abspath(args.img)])
if quantization_cfg.get('dataset', None) is None:
quantization_cfg['dataset'] = dataset_file
if backend == Backend.ASCEND:
if args.dump_info:
from mmdeploy.backend.ascend import update_sdk_pipeline
update_sdk_pipeline(args.work_dir)
if backend == Backend.VACC:
from onnx2vacc_quant_dataset import get_quant
from mmdeploy.utils import get_model_inputs
deploy_cfg, model_cfg = load_config(deploy_cfg_path, model_cfg_path)
model_inputs = get_model_inputs(deploy_cfg)
for onnx_path, model_input in zip(ir_files, model_inputs):
quant_mode = model_input.get('qconfig', {}).get('dtype', 'fp16')
assert quant_mode in ['int8', 'fp16'], quant_mode + ' not support now'
shape_dict = model_input.get('shape', {})
if quant_mode == 'int8':
create_process(
'vacc quant dataset',
target=get_quant,
args=(deploy_cfg, model_cfg, shape_dict, checkpoint_path,
args.work_dir, args.device),
kwargs=dict(),
ret_value=ret_value)
PIPELINE_MANAGER.set_log_level(log_level, [to_backend])
if backend == Backend.TENSORRT:
PIPELINE_MANAGER.enable_multiprocess(True, [to_backend])
backend_files = to_backend(
backend,
ir_files,
work_dir=args.work_dir,
deploy_cfg=deploy_cfg,
log_level=log_level,
device=args.device,
uri=args.uri)
if backend == Backend.NCNN and quant:
from onnx2ncnn_quant_table import get_table
from mmdeploy.apis.ncnn import get_quant_model_file, ncnn2int8
model_param_paths = backend_files[::2]
model_bin_paths = backend_files[1::2]
backend_files = []
for onnx_path, model_param_path, model_bin_path in zip(
ir_files, model_param_paths, model_bin_paths):
deploy_cfg, model_cfg = load_config(deploy_cfg_path,
model_cfg_path)
quant_onnx, quant_table, quant_param, quant_bin = get_quant_model_file(
onnx_path, args.work_dir)
create_process(
'ncnn quant table',
target=get_table,
args=(onnx_path, deploy_cfg, model_cfg, quant_onnx,
quant_table, quant_image_dir, args.device),
kwargs=dict(),
ret_value=ret_value)
create_process(
'ncnn_int8',
target=ncnn2int8,
args=(model_param_path, model_bin_path, quant_table,
quant_param, quant_bin),
kwargs=dict(),
ret_value=ret_value)
backend_files += [quant_param, quant_bin]
if args.test_img is None:
args.test_img = args.img
extra = dict(
backend=backend,
output_file=osp.join(args.work_dir, f'output_{backend.value}.jpg'),
show_result=args.show)
if backend == Backend.SNPE:
extra['uri'] = args.uri
create_process(
f'visualize {backend.value} model',
target=visualize_model,
args=(model_cfg_path, deploy_cfg_path, backend_files, args.test_img,
args.device),
kwargs=extra,
ret_value=ret_value)
create_process(
'visualize pytorch model',
target=visualize_model,
args=(model_cfg_path, deploy_cfg_path, [checkpoint_path], args.test_img, args.device),
kwargs=dict(
backend=Backend.PYTORCH,
output_file=osp.join(args.work_dir, 'output_pytorch.jpg'),
show_result=args.show),
ret_value=ret_value)
logger.info('All process success.')
if __name__ == '__main__':
main()
.\YOLO-World\deploy\deploy_test.py
import argparse
import os.path as osp
from copy import deepcopy
from mmengine import DictAction
from mmdeploy.apis import build_task_processor
from mmdeploy.utils.config_utils import load_config
from mmdeploy.utils.timer import TimeCounter
def parse_args():
parser = argparse.ArgumentParser(description='MMDeploy test (and eval) a backend.')
parser.add_argument('deploy_cfg', help='Deploy config path')
parser.add_argument('model_cfg', help='Model config path')
parser.add_argument('--model', type=str, nargs='+', help='Input model files.')
parser.add_argument('--device', help='device used for conversion', default='cpu')
parser.add_argument('--work-dir', default='./work_dir', help='the directory to save the file containing evaluation metrics')
parser.add_argument('--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair in xxx=yyy format will be merged into config file. If the value to be overwritten is a list, it should be like key="[a,b]" or key=a,b It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" Note that the quotation marks are necessary and that no white space is allowed.')
parser.add_argument('--show', action='store_true', help='show results')
parser.add_argument('--show-dir', help='directory where painted images will be saved')
parser.add_argument('--interval', type=int, default=1, help='visualize per interval samples.')
parser.add_argument('--wait-time', type=float, default=2, help='display time of every window. (second)')
parser.add_argument('--log2file', type=str, help='log evaluation results and speed to file', default=None)
parser.add_argument(
'--speed-test', action='store_true', help='activate speed test')
parser.add_argument(
'--warmup',
type=int,
help='warmup before counting inference elapse, require setting '
'speed-test first',
default=10)
parser.add_argument(
'--log-interval',
type=int,
help='the interval between each log, require setting '
'speed-test first',
default=100)
parser.add_argument(
'--batch-size',
type=int,
default=1,
help='the batch size for test, would override `samples_per_gpu`'
'in data config.')
parser.add_argument(
'--uri',
action='store_true',
default='192.168.1.1:60000',
help='Remote ipv4:port or ipv6:port for inference on edge device.')
args = parser.parse_args()
return args
def main():
args = parse_args()
deploy_cfg_path = args.deploy_cfg
model_cfg_path = args.model_cfg
deploy_cfg, model_cfg = load_config(deploy_cfg_path, model_cfg_path)
if args.work_dir is not None:
work_dir = args.work_dir
elif model_cfg.get('work_dir', None) is None:
work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0])
if args.cfg_options is not None:
model_cfg.merge_from_dict(args.cfg_options)
task_processor = build_task_processor(model_cfg, deploy_cfg, args.device)
test_dataloader = deepcopy(model_cfg['test_dataloader'])
if isinstance(test_dataloader, list):
dataset = []
for loader in test_dataloader:
ds = task_processor.build_dataset(loader['dataset'])
dataset.append(ds)
loader['dataset'] = ds
loader['batch_size'] = args.batch_size
loader = task_processor.build_dataloader(loader)
dataloader = test_dataloader
else:
test_dataloader['batch_size'] = args.batch_size
dataset = task_processor.build_dataset(test_dataloader['dataset'])
test_dataloader['dataset'] = dataset
dataloader = task_processor.build_dataloader(test_dataloader)
model = task_processor.build_backend_model(
args.model,
data_preprocessor_updater=task_processor.update_data_preprocessor)
destroy_model = model.destroy
is_device_cpu = (args.device == 'cpu')
runner = task_processor.build_test_runner(
model,
work_dir,
log_file=args.log2file,
show=args.show,
show_dir=args.show_dir,
wait_time=args.wait_time,
interval=args.interval,
dataloader=dataloader)
if args.speed_test:
with_sync = not is_device_cpu
with TimeCounter.activate(
warmup=args.warmup,
log_interval=args.log_interval,
with_sync=with_sync,
file=args.log2file,
batch_size=args.batch_size):
runner.test()
else:
runner.test()
destroy_model()
if __name__ == '__main__':
main()