Unpaired I2I 之EGSDE

53 阅读1分钟

EGSDE

EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations nips 2022

【腾讯文档】实验进度 docs.qq.com/doc/DU2VBcX…

Contribution

  • 提出energy-guided SDE,使用预训练SDE进行推理,实现未配对I2I
  • 引入两个特征提取器,分别学习与领域无关的特征特定领域的特征,构造能量函数保留内容信息丢弃风格信息

Method

Score-based Diffusion Models

  • forward SDE:
    • dy=f(y,t)dt+g(t)dwdy=f(y,t)dt+g(t)dw
  • reverse SDE:
    • dy=[f(y,t)g(t)2ylogqt(y)]dt+g(t)dwˉdy = [f (y, t) − g(t)^2∇_y log q_t(y)]dt + g(t)d\bar{w}
  • score-based diffusion model:
    • dy=[f(y,t)g(t)2s(y,t)]dt+g(t)dwˉdy = [f (y, t) − g(t)^2s(y, t)]dt + g(t)d\bar{w}

EGSDE

  • 采用在两个域上预训练的能量函数来指导SDE的推理过程,以实现兼顾realistic and faithful未配对I2I
    • dy=[f(y,t)g(t)2(s(y,t)yϵ(y,x0,t))]dt+g(t)dwˉdy = [f(y, t)−g(t)^2(s(y, t) − ∇_y \epsilon (y, x_0, t))]dt + g(t)d\bar{w}
    • ϵ(y,x,t)=λsSs(y,x,t)λiSi(y,x,t)\epsilon(y, x, t) = λ_sS_s(y, x, t) − λ_iS_i(y, x, t)

image.png

  • Choice of Energy

    • domain-specific 包含风格特征提取器E

      • Ss(y,xt,t)=1HWh,wEshw(xt,t)TEshw(y,t)Eshw(xt,t)2Eshw(y,t)2S_s(y, x_t, t) = \dfrac{1}{HW}∑_{h,w}\dfrac{E^{hw}_s(x_t, t)^T E^{hw}_s (y, t)}{||E^{hw}_s (x_t, t)||_2 ||E^{hw}_s (y, t)||_2}
      • 采用余弦相似度鼓励生成器的样本丢弃源领域的风格特征,向目标域风格迁移
    • domain-independent 包含 low-pass filter EiE_i

      • EiE_i会保留样本的整体结构,丢弃局部信息(如:纹理等风格特征)
      • Si(y,xt,t)=Ei(y,t)Ei(xt,t)22S_i(y, x_t, t) = −||E_i(y, t) − E_i(x_t, t)||^2_2
  • Solving the Energy-guided Reverse-time SDE

    • yt=ys[f(y,s)g(s)2(s(ys,s)yϵ(ys,x0,s))]h+g(s)hz,zN(0,I) y_t = y_s − [f (y, s) − g(s)^2(s(y_s, s) − ∇_y\epsilon(y_s, x_0, s))]h + g(s)\sqrt{h}z, z ∼ N (0, I)

image.png

Experiment

image.png

image.png

Plan

  • 用扩散模型实现unpaired I2I 损失如何设计
  • SDE改成ODE是否可行