这是我参与「第五届青训营」笔记创作活动的第十一天。
一、本堂课的重点内容
二、详细知识点如下
1、Go 内存管理
- 目标:为对象在 heap 上分配内存
-
提前将内存分块
- 调用系统调用 mmap() 向 OS 申请一大块内存,例如 4 MB
- 先将内存划分成大块,例如 8 KB,称作 mspan
- 再将大块继续划分成特定大小的小块,用于对象分配
- noscan mspan: 分配不包含指针的对象 —— GC 不需要扫描
- scan mspan: 分配包含指针的对象 —— GC 需要扫描
- 对象分配:根据对象的大小,选择最合适的块返回
-
内存缓存
- Go 内存管理构成了多级缓存机制,从 OS 分配得的内存被内存管理回收后,也不会立刻归还给 OS,而是在 Go runtime 内部先缓存起来,从而避免频繁向 OS 申请内存。
- Go 内存管理构成了多级缓存机制,从 OS 分配得的内存被内存管理回收后,也不会立刻归还给 OS,而是在 Go runtime 内部先缓存起来,从而避免频繁向 OS 申请内存。
2、Go 内存管理的问题
mspan, mcache 和 mcentral 构成了内存管理的多级缓存机制。
- 对象分配是非常高频的操作:每秒分配 GB 级别的内存
- 线上 profiling 发现,Go 的内存分配占用很多 CPU
可以看到,用于分配对象的函数 mallocgc() 占用 CPU 较高。
- 小对象分配占大多数
横轴是对象大小,纵轴是数目,可以看到绝大多数对象都小于 80 B。因此优化小对象分配是关键。
3、优化方案 Balanced GC
- 核心:将 noscan 对象在 per-g allocation buffer (GAB) 上分配,并使用移动对象 GC 管理这部分内存,提高对象分配和回收效率。
每个 g 会附加一个较大的 allocation buffer (例如 1 KB) 用来分配小于 128 B 的 noscan 小对象。使用三个指针维护GAB:base,end,top
bump pointer 风格的对象分配(无须和其他分配请求互斥,分配动作简单高效)
if g.ab.end - g.ab.top < size {
// Allocate a new allocation buffer
}
addr := g.ab.top
g.ab.top += size
return addr
- 分配对象时,根据对象大小移动
top指针并返回,快速完成一次对象分配
- 同原先调用
mallocgc()进行对象分配的方式相比,balanced GC 缩短了对象分配的路径,减少了对象分配执行的指令数目,降低 CPU 使用。
从 Go runtime 内存管理模块的角度看,一个 allocation buffer 其实是一个大对象。本质上 balanced GC 是将多次小对象的分配合并成一次大对象的分配。因此,当 GAB 中哪怕只有一个小对象存活时,Go runtime 也会认为整个大对象(即 GAB)存活。为此,balanced GC 会根据 GC 策略,将 GAB 中存活的对象移动到另外的 GAB 中,从而压缩并清理 GAB 的内存空间,原先的 GAB 空间由于不再有存活对象,可以全部释放。
上图上方是两个 GAB,其中虚线表示 GAB 中对象的分界线。黑色表示 GAB 中存活的对象,白色表示死掉的对象。由于 GAB 中有存活对象,整个 GAB 无法被回收。 Balanced GC 会将 GAB 中存活的对象移动到下面的 GAB 中,这样原先的两个 GABs 就可以被释放,压缩并清理 GAB 的内存空间。
Balanced GC 只负责 noscan 对象的分配和移动,对象的标记和回收依然依赖 Go GC 本身,并和 Go GC 保持兼容。
本质:用copying GC的算法管理小对象。
性能收益
三、课后个人总结
内存的释放过程,就是分配的反过程,当 mcache 中存在较多空闲 span 时,会归还给 mcentral;而 mcentral 中存在较多空闲 span 时,会归还给 mheap;mheap 再归还给操作系统。
总结一下,这种设计之所以快,主要有以下几个优势:
- 内存分配大多时候都是在用户态完成的,不需要频繁进入内核态。
- 每个 P 都有独立的 span cache,多个 CPU 不会并发读写同一块内存,进而减少 CPU L1 cache 的 cacheline 出现 dirty 情况,增大 cpu cache 命中率。
- 内存碎片的问题,Go 是自己在用户态管理的,在 OS 层面看是没有碎片的,使得操作系统层面对碎片的管理压力也会降低。
- mcache 的存在使得内存分配不需要加锁。