前言
很多人都认为 Redis 和 CPU 的关系很简单,就是 Redis 的线程在 CPU 上运行,CPU 快,Redis 处理请求的速度也很快。
CPU 的多核架构以及多 CPU 架构,也会影响到 Redis 的性能。如果不了解 CPU 对 Redis 的影响,在对 Redis 的性能进行调优时,就可能会遗漏一些调优方法,不能把 Redis 的性能发挥到极限。
主流 CPU 架构
要了解 CPU 对 Redis 具体有什么影响,我们得先了解一下 CPU 架构。
一个 CPU 处理器中一般有多个运行核心,我们把一个运行核心称为一个物理核,每个物理核都可以运行应用程序。每个物理核都拥有私有的一级缓存(Level 1 cache
,简称 L1 cache),包括一级指令缓存和一级数据缓存,以及私有的二级缓存(Level 2 cache
,简称 L2 cache)。
物理核的私有缓存。它其实是指缓存空间只能被当前的这个物理核使用,其他的物理核无法对这个核的缓存空间进行数据存取。
因为 L1 和 L2 缓存是每个物理核私有的,所以,当数据或指令保存在 L1、L2 缓存时,物理核访问它们的延迟不超过 10 纳秒,速度非常快。那么,如果 Redis 把要运行的指令或存取的数据保存在 L1 和 L2 缓存的话,就能高速地访问这些指令和数据。
但是,这些 L1 和 L2 缓存的大小受限于处理器的制造技术,一般只有 KB 级别,存不下太多的数据。如果 L1、L2 缓存中没有所需的数据,应用程序就需要访问内存来获取数据。而应用程序的访存延迟一般在百纳秒级别,是访问 L1、L2 缓存的延迟的近 10 倍,不可避免地会对性能造成影响。
所以,不同的物理核还会共享一个共同的三级缓存(Level 3 cache,简称为 L3 cache)。L3 缓存能够使用的存储资源比较多,所以一般比较大,能达到几 MB 到几十 MB,这就能让应用程序缓存更多的数据。当 L1、L2 缓存中没有数据缓存时,可以访问 L3,尽可能避免访问内存。
另外,现在主流的 CPU 处理器中,每个物理核通常都会运行两个超线程,也叫作逻辑核。同一个物理核的逻辑核会共享使用 L1、L2 缓存。
在主流的服务器上,一个 CPU 处理器会有 10 到 20 多个物理核。同时,为了提升服务器的处理能力,服务器上通常还会有多个 CPU 处理器(也称为多 CPU Socket),每个处理器有自己的物理核(包括 L1、L2 缓存),L3 缓存,以及连接的内存,同时,不同处理器间通过总线连接。
在多 CPU 架构上,应用程序可以在不同的处理器上运行。在刚才的图中,Redis 可以先在 Socket 1 上运行一段时间,然后再被调度到 Socket 2 上运行。
如果应用程序先在一个 Socket 上运行,并且把数据保存到了内存,然后被调度到另一个 Socket 上运行,此时,应用程序再进行内存访问时,就需要访问之前 Socket 上连接的内存,这种访问属于远端内存访问。和访问 Socket 直接连接的内存相比,远端内存访问会增加应用程序的延迟。
在多 CPU 架构下,一个应用程序访问所在 Socket 的本地内存和访问远端内存的延迟并不一致,所以,我们也把这个架构称为非统一内存访问架构(Non-Uniform Memory Access
,NUMA 架构)。
CPU 多核对 Redis 性能的影响
在一个 CPU 核上运行时,应用程序需要记录自身使用的软硬件资源信息(例如栈指针、CPU 核的寄存器值等),我们把这些信息称为运行时信息。同时,应用程序访问最频繁的指令和数据还会被缓存到 L1、L2 缓存上,以便提升执行速度。
但是,一旦应用程序需要在一个新的 CPU 核上运行,那么,运行时信息就需要重新加载到新的 CPU 核上。而且,新的 CPU 核的 L1、L2 缓存也需要重新加载数据和指令,这会导致程序的运行时间增加。
所以,在 CPU 多核的环境下,可以通过绑定 Redis 实例和 CPU 核,有效降低 Redis 的尾延迟。当然,绑核不仅对降低尾延迟有好处,同样也能降低平均延迟、提升吞吐率,进而提升 Redis 性能。
CPU 的 NUMA 架构对 Redis 性能的影响
在实际应用 Redis 时,我经常看到一种做法,为了提升 Redis 的网络性能,把操作系统的网络中断处理程序和 CPU 核绑定。这个做法可以避免网络中断处理程序在不同核上来回调度执行,的确能有效提升 Redis 的网络处理性能。
但是,网络中断程序是要和 Redis 实例进行网络数据交互的,一旦把网络中断程序绑核后,我们就需要注意 Redis 实例是绑在哪个核上了,这会关系到 Redis 访问网络数据的效率高低。
Redis 实例和网络中断程序的数据交互:网络中断处理程序从网卡硬件中读取数据,并把数据写入到操作系统内核维护的一块内存缓冲区。内核会通过 epoll 机制触发事件,通知 Redis 实例,Redis 实例再把数据从内核的内存缓冲区拷贝到自己的内存空间。
在 CPU 的 NUMA 架构下,当网络中断处理程序、Redis 实例分别和 CPU 核绑定后,就会有一个潜在的风险:如果网络中断处理程序和 Redis 实例各自所绑的 CPU 核不在同一个 CPU Socket 上,那么,Redis 实例读取网络数据时,就需要跨 CPU Socket 访问内存,这个过程会花费较多时间。
所以,为了避免 Redis 跨 CPU Socket 访问网络数据,我们最好把网络中断程序和 Redis 实例绑在同一个 CPU Socket 上,这样一来,Redis 实例就可以直接从本地内存读取网络数据了。
不过,需要注意的是,在 CPU 的 NUMA 架构下,对 CPU 核的编号规则,并不是先把一个 CPU Socket 中的所有逻辑核编完,再对下一个 CPU Socket 中的逻辑核编码,而是先给每个 CPU Socket 中每个物理核的第一个逻辑核依次编号,再给每个 CPU Socket 中的物理核的第二个逻辑核依次编号。
假设有 2 个 CPU Socket,每个 Socket 上有 6 个物理核,每个物理核又有 2 个逻辑核,总共 24 个逻辑核。我们可以执行 lscpu 命令,查看到这些核的编号:
lscpu
Architecture: x86_64
...
NUMA node0 CPU(s): 0-5,12-17
NUMA node1 CPU(s): 6-11,18-23
...
可以看到,NUMA node0 的 CPU 核编号是 0 到 5、12 到 17。其中,0 到 5 是 node0 上的 6 个物理核中的第一个逻辑核的编号,12 到 17 是相应物理核中的第二个逻辑核编号。NUMA node1 的 CPU 核编号规则和 node0 一样。
所以,在绑核时,我们一定要注意,不能想当然地认为第一个 Socket 上的 12 个逻辑核的编号就是 0 到 11。否则,网络中断程序和 Redis 实例就可能绑在了不同的 CPU Socket 上。
比如说,如果我们把网络中断程序和 Redis 实例分别绑到编号为 1 和 7 的 CPU 核上,此时,它们仍然是在 2 个 CPU Socket 上,Redis 实例仍然需要跨 Socket 读取网络数据。
小结
在 CPU 多核的场景下,用 taskset 命令把 Redis 实例和一个核绑定,可以减少 Redis 实例在不同核上被来回调度执行的开销,避免较高的尾延迟;在多 CPU 的 NUMA 架构下,如果你对网络中断程序做了绑核操作,建议你同时把 Redis 实例和网络中断程序绑在同一个 CPU Socket 的不同核上,这样可以避免 Redis 跨 Socket 访问内存中的网络数据的时间开销。
绑核的风险和解决方案
Redis 除了主线程以外,还有用于 RDB 生成和 AOF 重写的子进程(可以回顾下我的另一篇文章)。此外,还有 Redis 的后台子线程(可以回顾下我的另一篇文章)。
当我们把 Redis 实例绑到一个 CPU 逻辑核上时,就会导致子进程、后台线程和 Redis 主线程竞争 CPU 资源,一旦子进程或后台线程占用 CPU 时,主线程就会被阻塞,导致 Redis 请求延迟增加。
方案一:一个 Redis 实例对应绑一个物理核
在给 Redis 实例绑核时,我们不要把一个实例和一个逻辑核绑定,而要和一个物理核绑定,也就是说,把一个物理核的 2 个逻辑核都用上。
和只绑一个逻辑核相比,把 Redis 实例和物理核绑定,可以让主线程、子进程、后台线程共享使用 2 个逻辑核,可以在一定程度上缓解 CPU 资源竞争。但是,因为只用了 2 个逻辑核,它们相互之间的 CPU 竞争仍然还会存在。
方案二:优化 Redis 源码
这个方案就是通过修改 Redis 源码,把子进程和后台线程绑到不同的 CPU 核上。
通过编程实现绑核时,要用到操作系统提供的 1 个数据结构 cpu_set_t 和 3 个函数 CPU_ZERO、CPU_SET 和 sched_setaffinity。
- cpu_set_t 数据结构:是一个位图,每一位用来表示服务器上的一个 CPU 逻辑核。
- CPU_ZERO 函数:以 cpu_set_t 结构的位图为输入参数,把位图中所有的位设置为 0。
- CPU_SET 函数:以 CPU 逻辑核编号和 cpu_set_t 位图为参数,把位图中和输入的逻辑核编号对应的位设置为 1。
- sched_setaffinity 函数:以进程 / 线程 ID 号和 cpu_set_t 为参数,检查 cpu_set_t 中哪一位为 1,就把输入的 ID 号所代表的进程 / 线程绑在对应的逻辑核上。
先说后台线程。为了让你更好地理解编程实现绑核,你可以看下这段示例代码,它实现了为线程绑核的操作:
//线程函数
void worker(int bind_cpu){
cpu_set_t cpuset; //创建位图变量
CPU_ZERO(&cpu_set); //位图变量所有位设置0
CPU_SET(bind_cpu, &cpuset); //根据输入的bind_cpu编号,把位图对应为设置为1
sched_setaffinity(0, sizeof(cpuset), &cpuset); //把程序绑定在cpu_set_t结构位图中为1的逻辑核
//实际线程函数工作
}
int main(){
pthread_t pthread1
//把创建的pthread1绑在编号为3的逻辑核上
pthread_create(&pthread1, NULL, (void *)worker, 3);
}
对于 Redis 来说,它是在 bio.c 文件中的 bioProcessBackgroundJobs 函数中创建了后台线程。bioProcessBackgroundJobs 函数类似于刚刚的例子中的 worker 函数,在这个函数中实现绑核四步操作,就可以把后台线程绑到和主线程不同的核上了。
和给线程绑核类似,当我们使用 fork 创建子进程时,也可以把刚刚说的四步操作实现在 fork 后的子进程代码中,示例代码如下:
int main(){
//用fork创建一个子进程
pid_t p = fork();
if(p < 0){
printf(" fork error\n");
}
//子进程代码部分
else if(!p){
cpu_set_t cpuset; //创建位图变量
CPU_ZERO(&cpu_set); //位图变量所有位设置0
CPU_SET(3, &cpuset); //把位图的第3位设置为1
sched_setaffinity(0, sizeof(cpuset), &cpuset); //把程序绑定在3号逻辑核
//实际子进程工作
exit(0);
}
...
}
对于 Redis 来说,生成 RDB 和 AOF 日志重写的子进程分别是下面两个文件的函数中实现的。
- rdb.c 文件:rdbSaveBackground 函数;
- aof.c 文件:rewriteAppendOnlyFileBackground 函数。
总结
Redis 的低延迟是我们永恒的追求目标,而多核 CPU 和 NUMA 架构已经成为了目前服务器的主流配置。
在多核 CPU 架构下,Redis 如果在不同的核上运行,就需要频繁地进行上下文切换,这个过程会增加 Redis 的执行时间,客户端也会观察到较高的尾延迟了。所以,建议你在 Redis 运行时,把实例和某个核绑定,这样,就能重复利用核上的 L1、L2 缓存,可以降低响应延迟。
参考
摘自 极客时间 - 蒋德钧老师的《Redis 核心技术与实战》 <- 推荐大家阅读~
《Redis 核心技术与实战》学习笔记 Day17