前言
Redis 被广泛应用,很重要的一个原因就是它支持高性能访问。所以,我们必须要重视所有可能影响 Redis 性能的因素,不仅要知道具体的机制,尽可能避免性能异常的情况出现,还要提前准备好应对异常的方案。
有哪些阻塞点?
Redis 实例在运行时,要和许多对象进行交互,这些不同的交互就会涉及不同的操作,下面我们来看看和 Redis 实例交互的对象,以及交互时会发生的操作。
- 客户端:网络 IO,键值对增删改查操作,数据库操作;
- 磁盘:生成 RDB 快照,记录 AOF 日志,AOF 日志重写;
- 主从节点:主库生成、传输 RDB 文件,从库接收 RDB 文件、清空数据库、加载 RDB 文件;
- 切片集群实例:向其他实例传输哈希槽信息,数据迁移。
客户端交互的阻塞点
网络IO
网络 IO 有时候会比较慢,但是 Redis 使用了 IO 多路复用机制,避免了主线程一直处在等待网络连接或请求到来的状态。
并且,随着网络硬件的性能提升,在 Redis 6.0 中,采用了多个 IO 线程来处理网络请求,提升网络请求的并行度。
所以,网络 IO 不是导致 Redis 阻塞的因素。
键值对操作
Redis 中涉及集合的操作复杂度通常为 O(N),我们要在使用时重视起来。例如集合元素全量查询操作 HGETALL、SMEMBERS,以及集合的聚合统计操作,例如求交、并和差集。这些操作可以作为 Redis 的第一个阻塞点:集合全量查询和聚合操作。
小建议:可以使用 SCAN 命令,分批读取数据,再在客户端进行聚合计算。
除此之外,集合自身的删除操作同样也有潜在的阻塞风险。删除操作的本质是要释放键值对占用的内存空间。
释放内存只是第一步,为了更加高效地管理内存空间,在应用程序释放内存时,操作系统需要把释放掉的内存块插入一个空闲内存块的链表,以便后续进行管理和再分配。这个过程本身需要一定时间,而且会阻塞当前释放内存的应用程序,所以,如果一下子释放了大量内存,空闲内存块链表操作时间就会增加,相应地就会造成 Redis 主线程的阻塞。
那么,什么时候会释放大量内存呢?其实就是在删除大量键值对数据的时候,最典型的就是删除包含了大量元素的集合,也称为 bigkey 删除。很显然,bigkey 删除操作就是 Redis 的第二个阻塞点。删除操作对 Redis 实例性能的负面影响很大,而且在实际业务开发时容易被忽略,所以一定要重视它。
数据库操作
既然频繁删除键值对都是潜在的阻塞点了,那么,在 Redis 的数据库级别操作中,清空数据库(例如 FLUSHDB 和 FLUSHALL 操作)必然也是一个潜在的阻塞风险,因为它涉及到删除和释放所有的键值对。所以,这就是 Redis 的第三个阻塞点:清空数据库。
磁盘交互的阻塞点
磁盘 IO 一般是比较费时费力的,好在 Redis 开发者早已认识到磁盘 IO 会带来阻塞,所以就把 Redis 进一步设计为采用子进程的方式生成 RDB 快照文件,以及执行 AOF 日志重写操作。这样一来,这两个操作由子进程负责执行,慢速的磁盘 IO 就不会阻塞主线程了。
但是,Redis 直接记录 AOF 日志时,会根据不同的写回策略对数据做刷盘处理。一个同步写磁盘的操作耗时大约 1 ~ 2ms, 如果有大量的写操作需要同步记录 AOF 日志时,就会阻塞主线程了。所以,Redis 的第四个阻塞点:AOF 日志同步写。
主从节点交互的阻塞点
在主从集群中,主库需要生成 RDB 文件,并传输给从库。主库在复制的过程中,创建和传输 RDB 文件都是由子进程来完成的,不会阻塞主线程。但是,对于从库来说,它在接收了 RDB 文件后,需要使用 FLUSHDB 命令清空当前数据库,这就正好撞上了刚才我们分析的第三个阻塞点。
此外,从库在清空当前数据库后,还需要把 RDB 文件加载到内存,这个过程的快慢和 RDB 文件的大小密切相关,RDB 文件越大,加载过程越慢,所以,加载 RDB 文件就成为了 Redis 的第五个阻塞点。
小建议:把主库的数据量大小控制在 2~4GB 左右,以保证 RDB 文件能以较快的速度加载。
切片集群实例交互的阻塞点
当我们部署 Redis 切片集群时,每个 Redis 实例上分配的哈希槽信息需要在不同实例间进行传递,同时,当需要进行负载均衡或者有实例增删时,数据会在不同的实例间进行迁移。不过,哈希槽的信息量不大,而数据迁移是渐进式执行的,所以,一般来说,这两类操作对 Redis 主线程的阻塞风险不大。
不过,如果你使用了 Redis Cluster 方案,而且同时正好迁移的是 bigkey 的话,就会造成主线程的阻塞,因为 Redis Cluster 使用了同步迁移(不了解 Redis 集群的同学可以回顾一下我的另一篇文章~)。
所以,当没有 bigkey 时,切片集群的各实例在进行交互时不会阻塞主线程。
小结
这里我们已经从 Redis 的各种关键操作中找到了五个阻塞点。
如果在主线程中执行这些操作,必然会导致主线程长时间无法服务其他请求。为了避免阻塞式操作,Redis 提供了异步线程机制。所谓的异步线程机制,就是指,Redis 会启动一些子线程,然后把一些任务交给这些子线程,让它们在后台完成,而不再由主线程来执行这些任务。
哪些阻塞点可以异步执行?
如果一个操作能被异步执行,就意味着,它并不是 Redis 主线程的关键路径上的操作。关键路径上的操作是客户端把请求发送给 Redis 后,等着 Redis 返回数据结果的操作。
对于 Redis 来说,读操作是典型的关键路径操作,因为客户端发送了读操作之后,就会等待读取的数据返回,以便进行后续的数据处理。而 Redis 的第一个阻塞点“集合全量查询和聚合操作”都涉及到了读操作,所以,它们是不能进行异步操作了。
对于第四个阻塞点“AOF 日志同步写”来说,为了保证数据可靠性,Redis 实例需要保证 AOF 日志中的操作记录已经落盘。如果采用后台子线程异步完成,主线程就无法及时地知道每个操作是否已经完成了。这就不符合同步写策略的要求了。所以,同步写策略并不使用后台子线程来执行。
“从库加载 RDB 文件”这个阻塞点。从库要想对客户端提供数据存取服务,就必须把 RDB 文件加载完成。所以,这个操作也属于关键路径上的操作,我们必须让从库的主线程来执行。
异步的子线程机制
Redis 主线程启动后,会使用操作系统提供的 pthread_create 函数创建 3 个子线程,分别由它们负责 AOF 日志写操作、键值对删除以及文件关闭的异步执行。
主线程通过一个链表形式的任务队列和子线程进行交互。当收到键值对删除和清空数据库的操作时,主线程会把这个操作封装成一个任务,放入到任务队列中,然后给客户端返回一个完成信息,表明删除已经完成。但实际上,这个时候删除还没有执行,等到后台子线程从任务队列中读取任务后,才开始实际删除键值对,并释放相应的内存空间。因此,我们把这种异步删除也称为惰性删除(lazy free
)。
和惰性删除类似,当 AOF 日志配置成 everysec 选项后,主线程会把 AOF 写日志操作封装成一个任务,也放到任务队列中。后台子线程读取任务后,开始自行写入 AOF 日志,这样主线程就不用一直等待 AOF 日志写完了。
这里有个地方需要你注意一下,异步的键值对删除和数据库清空操作是 Redis 4.0 后提供的功能,Redis 也提供了新的命令来执行这两个操作。
- 键值对删除:当你的集合类型中有大量元素(例如有百万级别或千万级别元素)需要删除时,我建议你使用 UNLINK 命令。
- 清空数据库:可以在 FLUSHDB 和 FLUSHALL 命令后加上 ASYNC 选项,这样就可以让后台子线程异步地清空数据库。
FLUSHDB ASYNC
FLUSHALL AYSNC
总结
Redis 实例运行时的 4 大类交互对象:客户端、磁盘、主从库实例、切片集群实例。
基于这 4 大类交互对象,我们梳理了会导致 Redis 性能受损的 5 大阻塞点,包括集合全量查询和聚合操作、bigkey 删除、清空数据库、AOF 日志同步写,以及从库加载 RDB 文件。
参考
摘自 极客时间 - 蒋德钧老师的《Redis 核心技术与实战》 <- 推荐大家阅读~
《Redis 核心技术与实战》学习笔记 Day16