遍历序列构造二叉树总结

1,165 阅读3分钟

持续创作,加速成长!这是我参与「掘金日新计划 · 10 月更文挑战」的第1天,点击查看活动详情

从中序与后序遍历序列构造二叉树

题目

根据一棵树的中序遍历与后序遍历构造二叉树。

注意: 你可以假设树中没有重复的元素。

例如,给出

中序遍历 inorder = [9,3,15,20,7]
后序遍历 postorder = [9,15,7,20,3]

返回如下的二叉树:

    3
   / \
  9  20
    /  \
   15   7

解题思路

根据题意, 我们知道后序遍历的形式是先遍历左子树点,然后是右子树,最后是根节点;中序遍历的形式是,先左子树,再根节点,最后是右节点;

只要我们在中序遍历中定位到根节点,那么我们就可以分别知道左子树和右子树中的节点数目。我们可以发现后序遍历的数组最后一个元素代表的即为根节点,由于同一颗子树的后序遍历和中序遍历的长度显然是相同的,因此我们就可以对应到后序遍历的结果中,对上述形式中的所有左右括号进行定位。

这样以来,我们就知道了左子树的后序遍历和中序遍历结果,以及右子树的后序遍历和中序遍历结果,我们就可以递归地对构造出左子树和右子树,再将这两颗子树接到根节点的左右位置。

在中序遍历中对根节点进行定位时,我们可以考虑使用哈希表来帮助我们快速地定位根节点。对于哈希映射中的每个键值对,键表示一个元素(节点的值),值表示其在中序遍历中的出现位置,代码实现如下:

代码实现

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    // 定义哈希表用于定位中序数组根节点的的位置
    public HashMap<Integer, Integer> map = new HashMap();
    int[] post;

    public TreeNode buildTree(int[] inorder, int[] postorder) {
        for (int i = 0; i < inorder.length; i++){
            map.put(inorder[i], i);
        }
        post = postorder;
        TreeNode root = helper(0, inorder.length - 1, 0, post.length - 1);
        return root;
    }

        public TreeNode helper(int inStart, int inEnd, int postStart, int postEnd){
        if (inStart > inEnd || postStart > postEnd) return null;
        int val = post[postEnd];
        int rootPos = map.get(val);
        TreeNode node = new TreeNode(val);
        node.left = helper(inStart, rootPos -1 , postStart, postStart + rootPos - inStart -1);
        node.right = helper(rootPos+1, inEnd, postStart + rootPos - inStart, postEnd - 1);
        return node;
    }
}

复杂度分析:

  • 时间复杂度:O(n),其中 n 是树中的节点个数。

  • 空间复杂度:O(n)。我们需要使用 O(n) 的空间存储哈希表,以及 O(h)(其中 h 是树的高度)的空间表示递归时栈空间。这里 h < n,所以总空间复杂度为 O(n)。

从前序与中序遍历序列构造二叉树

题目

给定一棵树的前序遍历 preorder 与中序遍历 inorder。请构造二叉树并返回其根节点。

image

解题思路

根据题意, 我们知道前序遍历的形式是先遍历根节点,然后是左子树,最后是右子树;中序遍历的形式是,先左子树,再根节点,最后是右节点;

只要我们在中序遍历中定位到根节点,那么我们就可以分别知道左子树和右子树中的节点数目。由于同一颗子树的前序遍历和中序遍历的长度显然是相同的,因此我们就可以对应到前序遍历的结果中,对上述形式中的所有左右括号进行定位。

这样以来,我们就知道了左子树的前序遍历和中序遍历结果,以及右子树的前序遍历和中序遍历结果,我们就可以递归地对构造出左子树和右子树,再将这两颗子树接到根节点的左右位置。

在中序遍历中对根节点进行定位时,我们可以考虑使用哈希表来帮助我们快速地定位根节点。对于哈希映射中的每个键值对,键表示一个元素(节点的值),值表示其在中序遍历中的出现位置,代码实现如下:

代码实现

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public HashMap<Integer, Integer> map = new HashMap();
    int[] preOrder;

    public TreeNode buildTree(int[] preorder, int[] inorder) {
        for (int i = 0; i < inorder.length; i++) {
            map.put(inorder[i], i);
        }
        this.preOrder = preorder;

        return helper(0, inorder.length - 1, 0, preOrder.length - 1);
    }

    public TreeNode helper(int inStart, int inEnd, int preStart, int preEnd) {
        if (inStart > inEnd || preStart > preEnd) return null;
        int root = preOrder[preStart]; 
        int pos = map.get(root);
        TreeNode node = new TreeNode(root);
        node.left = helper(inStart, pos - 1, preStart + 1, preStart + pos - inStart);
        node.right = helper(pos + 1, inEnd, preStart + pos - inStart + 1, preEnd);
        return node;
    }
}

复杂度分析

  • 时间复杂度:O(n),其中 n 是树中的节点个数。

  • 空间复杂度:O(n),除去返回的答案需要的 O(n) 空间之外,我们还需要使用 O(n) 的空间存储哈希映射,以及 O(h)(其中 h 是树的高度)的空间表示递归时栈空间。这里 h < n,所以总空间复杂度为 O(n)。

我是杰少,如果您觉的我写的不错,那请给我 点赞+评论+收藏 后再走哦!

往期文章:

请你喝杯 ☕️ 点赞 + 关注哦~

  1. 阅读完记得给我点个赞哦,有👍 有动力
  2. 关注公众号--- HelloWorld杰少,第一时间推送新姿势

最后,创作不易,如果对大家有所帮助,希望大家点赞支持,有什么问题也可以在评论区里讨论😄~**