头脑风暴:完全背包

1,231 阅读2分钟

携手创作,共同成长!这是我参与「掘金日新计划 · 8 月更文挑战」的第8天,点击查看活动详情

题目

有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。

解题思路

完全背包和01背包问题唯一不同的地方就是,每种物品有无限件, 问背包能背的物品最大价值是多少? 求解该题与 01 背包问题的区别就在于遍历顺序上。

所以第一步确定 dp 数组的定义,在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

第二步确定递推公式,dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,

所以递归公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

第三步 dp 数组初始化,由于物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了。

我们知道01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。

而完全背包的物品是可以添加多次的,所以要从小到大去遍历,代码如下:

// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品
    for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    }
}

代码实现

private static void testCompletePack(){
    int[] weight = {1, 3, 4};
    int[] value = {15, 20, 30};
    int bagWeight = 4;
    int[] dp = new int[bagWeight + 1];
    for (int i = 0; i < weight.length; i++){ // 遍历物品
        for (int j = weight[i]; j <= bagWeight; j++){ // 遍历背包容量
            dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
        }
    }
    for (int maxValue : dp){
        System.out.println(maxValue + "   ");
    }
}

我是杰少,如果您觉的我写的不错,那请给我 点赞+评论+收藏 后再走哦!

往期文章:

请你喝杯 ☕️ 点赞 + 关注哦~

  1. 阅读完记得给我点个赞哦,有👍 有动力
  2. 关注公众号--- HelloWorld杰少,第一时间推送新姿势

最后,创作不易,如果对大家有所帮助,希望大家点赞支持,有什么问题也可以在评论区里讨论😄~**