上篇 锁 的探索中我们了解了常规锁的一些内容,但开发中最便捷的还是@synchronized,它 既是互斥锁又是递归锁,因此我们单独拉出一个篇章
1、查看转译文件
我们准备一个简单的 @synchronized 使用,然后使用 clang -rewrite-objc ViewController.m命令将ViewController.m文件转译成.cpp文件
在.cpp文件中我们找到我们写入@synchronized的方法viewDidLoad:
static void _I_ViewController_viewDidLoad(ViewController * self, SEL _cmd) {
((void (*)(__rw_objc_super *, SEL))(void *)objc_msgSendSuper)((__rw_objc_super){(id)self, (id)class_getSuperclass(objc_getClass("ViewController"))}, sel_registerName("viewDidLoad"));
NSObject *obj = ((NSObject *(*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("NSObject"), sel_registerName("alloc"));
// @synchronized 在cpp中被转换为try catch
{ id _rethrow = 0; id _sync_obj = (id)obj; objc_sync_enter(_sync_obj);
try {
// 构造与析构时执行指定方法
struct _SYNC_EXIT { _SYNC_EXIT(id arg) : sync_exit(arg) {}
~_SYNC_EXIT() {objc_sync_exit(sync_exit);}
id sync_exit;
} _sync_exit(_sync_obj);
} catch (id e) {_rethrow = e;}
{ struct _FIN { _FIN(id reth) : rethrow(reth) {}
~_FIN() { if (rethrow) objc_exception_throw(rethrow); }
id rethrow;
} _fin_force_rethow(_rethrow);}
}
- @synchronized 在cpp中被转换为 try catch,我们主要关注try中的内容;之前探索分类时我们知道,_SYNC_EXIT() 与 ~_SYNC_EXIT()这种组合写法表示构造与析构时会执行括号中指定的方法
objc_sync_enter()与objc_sync_exit()是我们探索的重点
2、底层探索
2.1、objc_sync_enter() 与 objc_sync_exit()
// Begin synchronizing on 'obj'.
// Allocates recursive mutex associated with 'obj' if needed.
// Returns OBJC_SYNC_SUCCESS once lock is acquired.
int objc_sync_enter(id obj)
{
int result = OBJC_SYNC_SUCCESS;
if (obj) {
SyncData* data = id2data(obj, ACQUIRE);
ASSERT(data);
data->mutex.lock();
} else {
// @synchronized(nil) does nothing
if (DebugNilSync) {
_objc_inform("NIL SYNC DEBUG: @synchronized(nil); set a breakpoint on objc_sync_nil to debug");
}
objc_sync_nil();
}
return result;
}
// End synchronizing on 'obj'.
// Returns OBJC_SYNC_SUCCESS or OBJC_SYNC_NOT_OWNING_THREAD_ERROR
int objc_sync_exit(id obj)
{
int result = OBJC_SYNC_SUCCESS;
if (obj) {
SyncData* data = id2data(obj, RELEASE);
if (!data) {
result = OBJC_SYNC_NOT_OWNING_THREAD_ERROR;
} else {
bool okay = data->mutex.tryUnlock();
if (!okay) {
result = OBJC_SYNC_NOT_OWNING_THREAD_ERROR;
}
}
} else {
// @synchronized(nil) does nothing
}
return result;
}
- 源码可以看到,如果@synchronized中未传入内容,则锁失效
- 通过
id2data()函数,可以得到SyncData类型数据,然后这个类型中有加锁和解锁方法
2.2、SyncData
typedef struct alignas(CacheLineSize) SyncData {
struct SyncData* nextData;
DisguisedPtr<objc_object> object;
int32_t threadCount; // number of THREADS using this block
recursive_mutex_t mutex;
} SyncData;
- 从结构我们能看出,
SyncData是一个链表 threadCount:记录了有多少条线程使用了这个block- mutex :是一把 recursive_mutex_t 类型的递归锁
- object :在前边 探索分类与关联对象 中我们知道
DisguisedPtr是对object的封装(将传入的任意类型进行格式统一)
2.3、id2data(obj, ACQUIRE)
static SyncData* id2data(id object, enum usage why)
{
// 获取锁
spinlock_t *lockp = &LOCK_FOR_OBJ(object);
// 指向链表指针的指针即头结点
SyncData **listp = &LIST_FOR_OBJ(object);
// 最终用于返回的接收者
SyncData* result = NULL;
#if SUPPORT_DIRECT_THREAD_KEYS
// Check per-thread single-entry fast cache for matching object
bool fastCacheOccupied = NO;
SyncData *data = (SyncData *)tls_get_direct(SYNC_DATA_DIRECT_KEY);
if (data) {
fastCacheOccupied = YES;
if (data->object == object) {
// Found a match in fast cache.
uintptr_t lockCount;
result = data;
lockCount = (uintptr_t)tls_get_direct(SYNC_COUNT_DIRECT_KEY);
if (result->threadCount <= 0 || lockCount <= 0) {
_objc_fatal("id2data fastcache is buggy");
}
switch(why) {
case ACQUIRE: {
lockCount++;
tls_set_direct(SYNC_COUNT_DIRECT_KEY, (void*)lockCount);
break;
}
case RELEASE:
lockCount--;
tls_set_direct(SYNC_COUNT_DIRECT_KEY, (void*)lockCount);
if (lockCount == 0) {
// remove from fast cache
tls_set_direct(SYNC_DATA_DIRECT_KEY, NULL);
// atomic because may collide with concurrent ACQUIRE
OSAtomicDecrement32Barrier(&result->threadCount);
}
break;
case CHECK:
// do nothing
break;
}
return result;
}
}
#endif
// Check per-thread cache of already-owned locks for matching object
SyncCache *cache = fetch_cache(NO);
if (cache) {
unsigned int i;
for (i = 0; i < cache->used; i++) {
SyncCacheItem *item = &cache->list[i];
if (item->data->object != object) continue;
// Found a match.
result = item->data;
if (result->threadCount <= 0 || item->lockCount <= 0) {
_objc_fatal("id2data cache is buggy");
}
switch(why) {
case ACQUIRE:
item->lockCount++;
break;
case RELEASE:
item->lockCount--;
if (item->lockCount == 0) {
// remove from per-thread cache
cache->list[i] = cache->list[--cache->used];
// atomic because may collide with concurrent ACQUIRE
OSAtomicDecrement32Barrier(&result->threadCount);
}
break;
case CHECK:
// do nothing
break;
}
return result;
}
}
// Thread cache didn't find anything.
// Walk in-use list looking for matching object
// Spinlock prevents multiple threads from creating multiple
// locks for the same new object.
// We could keep the nodes in some hash table if we find that there are
// more than 20 or so distinct locks active, but we don't do that now.
lockp->lock();
{
SyncData* p;
SyncData* firstUnused = NULL;
for (p = *listp; p != NULL; p = p->nextData) {
if ( p->object == object ) {
result = p;
// atomic because may collide with concurrent RELEASE
OSAtomicIncrement32Barrier(&result->threadCount);
goto done;
}
if ( (firstUnused == NULL) && (p->threadCount == 0) )
firstUnused = p;
}
// no SyncData currently associated with object
if ( (why == RELEASE) || (why == CHECK) )
goto done;
// an unused one was found, use it
if ( firstUnused != NULL ) {
result = firstUnused;
result->object = (objc_object *)object;
result->threadCount = 1;
goto done;
}
}
// Allocate a new SyncData and add to list.
// XXX allocating memory with a global lock held is bad practice,
// might be worth releasing the lock, allocating, and searching again.
// But since we never free these guys we won't be stuck in allocation very often.
posix_memalign((void **)&result, alignof(SyncData), sizeof(SyncData));
result->object = (objc_object *)object;
result->threadCount = 1;
new (&result->mutex) recursive_mutex_t(fork_unsafe_lock);
result->nextData = *listp;
*listp = result;
done:
lockp->unlock();
if (result) {
// Only new ACQUIRE should get here.
// All RELEASE and CHECK and recursive ACQUIRE are
// handled by the per-thread caches above.
if (why == RELEASE) {
// Probably some thread is incorrectly exiting
// while the object is held by another thread.
return nil;
}
if (why != ACQUIRE) _objc_fatal("id2data is buggy");
if (result->object != object) _objc_fatal("id2data is buggy");
#if SUPPORT_DIRECT_THREAD_KEYS
if (!fastCacheOccupied) {
// Save in fast thread cache
tls_set_direct(SYNC_DATA_DIRECT_KEY, result);
tls_set_direct(SYNC_COUNT_DIRECT_KEY, (void*)1);
} else
#endif
{
// Save in thread cache
if (!cache) cache = fetch_cache(YES);
cache->list[cache->used].data = result;
cache->list[cache->used].lockCount = 1;
cache->used++;
}
}
return result;
}
// Use multiple parallel lists to decrease contention among unrelated objects.
#define LOCK_FOR_OBJ(obj) sDataLists[obj].lock
#define LIST_FOR_OBJ(obj) sDataLists[obj].data
static StripedMap<SyncList> sDataLists;
- id2data() 函数中主要分为1个准备模块和4个逻辑模块
2.3.1、预备模块
static SyncData* id2data(id object, enum usage why)
{
// 获取锁
spinlock_t *lockp = &LOCK_FOR_OBJ(object);
// 指向链表指针的指针即头结点
SyncData **listp = &LIST_FOR_OBJ(object);
// 最终用于返回的接收者
SyncData* result = NULL;
......
}
-
SyncList
struct SyncList { SyncData *data; // 包含 spinlock 锁 spinlock_t lock; constexpr SyncList() : data(nil), lock(fork_unsafe_lock) { } }; -
全局Hash表StripedMap
//缓存带spinlock锁能力的类或结构体 // StripedMap<T> is a map of void* -> T, sized appropriately // for cache-friendly lock striping. // For example, this may be used as StripedMap<spinlock_t> // or as StripedMap<SomeStruct> where SomeStruct stores a spin lock. template<typename T> class StripedMap { #if TARGET_OS_IPHONE && !TARGET_OS_SIMULATOR enum { StripeCount = 8 }; #else enum { StripeCount = 64 }; #endif ...... }-
如果将所有锁对象放入同一张表中,那么在用这个对象时需要其他对象解锁,因此更好的方法是每个对象创建一张表,但如果无节制的创建表会造成大量内存开销,因此苹果采取折中方式使用 StripeCount 写死能创建的表数量,真机为8张、模拟器为64张
-
因为
真机只有8张@synchronized对象缓存表、模拟器有64张@synchronized对象缓存表,所以常规未使用大量不同@synchronized对象时,从8张表中取数据效率肯定比64张高,所以这就是为什么@synchronized锁在真机中效率更高一些的原因
-
2.3.2、查找快速缓存
static SyncData* id2data(id object, enum usage why)
{
......
#if SUPPORT_DIRECT_THREAD_KEYS
// Check per-thread single-entry fast cache for matching object
bool fastCacheOccupied = NO;
SyncData *data = (SyncData *)tls_get_direct(SYNC_DATA_DIRECT_KEY);
if (data) {
// 快速缓存中查到则置为YES
fastCacheOccupied = YES;
if (data->object == object) {
// Found a match in fast cache.
uintptr_t lockCount;
result = data;
lockCount = (uintptr_t)tls_get_direct(SYNC_COUNT_DIRECT_KEY);
if (result->threadCount <= 0 || lockCount <= 0) {
_objc_fatal("id2data fastcache is buggy");
}
switch(why) {
case ACQUIRE: {
lockCount++;
tls_set_direct(SYNC_COUNT_DIRECT_KEY, (void*)lockCount);
break;
}
case RELEASE:
lockCount--;
tls_set_direct(SYNC_COUNT_DIRECT_KEY, (void*)lockCount);
if (lockCount == 0) {
// remove from fast cache
tls_set_direct(SYNC_DATA_DIRECT_KEY, NULL);
// atomic because may collide with concurrent ACQUIRE
OSAtomicDecrement32Barrier(&result->threadCount);
}
break;
case CHECK:
// do nothing
break;
}
return result;
}
}
#endif
......
}
- 通过 SYNC_DATA_DIRECT_KEY 标志位快速查找 SyncData
2.3.3、查找缓存cache
static SyncData* id2data(id object, enum usage why)
{
......
// TLS -- 线程的局部存储空间
// Check per-thread cache of already-owned locks for matching object
// _objc_pthread_data --> syncCache
SyncCache *cache = fetch_cache(NO);
if (cache) {
unsigned int i;
for (i = 0; i < cache->used; i++) {
SyncCacheItem *item = &cache->list[i];
if (item->data->object != object) continue;
// Found a match.
// 缓存中匹配到了SyncData,则赋值给用于返回的result
result = item->data;
if (result->threadCount <= 0 || item->lockCount <= 0) {
_objc_fatal("id2data cache is buggy");
}
// 根据传入的加锁、解锁类型对线程的引用计数进行加减
switch(why) {
case ACQUIRE:
item->lockCount++;
break;
case RELEASE:
item->lockCount--;
if (item->lockCount == 0) {
// remove from per-thread cache
cache->list[i] = cache->list[--cache->used];
// atomic because may collide with concurrent ACQUIRE
// 当线程中对block的引用减为0后,将线程的计数-1
OSAtomicDecrement32Barrier(&result->threadCount);
}
break;
case CHECK:
// do nothing
break;
}
return result;
}
}
......
}
TLS:每条线程都有一小块专门存放该线程信息的局部存储空间- fetch_cache() --> _objc_pthread_data -->
syncCache(系统专门备注:// for @synchronize) syncCacheItemtypedef struct { SyncData *data; unsigned int lockCount; // number of times THIS THREAD locked this block } SyncCacheItem;lockCount:当前线程对block加了几次锁(因为可能递归加锁)
2.3.4、查找全局Hash表StripedMap
前两个模块是在 当前线程的TLS中找SyncData,如果都没找到则到 全局Hash表StripedMap 中去找
static SyncData* id2data(id object, enum usage why)
{
......
// Thread cache didn't find anything.
// Walk in-use list looking for matching object
// Spinlock prevents multiple threads from creating multiple
// locks for the same new object.
// We could keep the nodes in some hash table if we find that there are
// more than 20 or so distinct locks active, but we don't do that now.
lockp->lock();
{
SyncData* p;
SyncData* firstUnused = NULL;
// 查找链表下一节点
for (p = *listp; p != NULL; p = p->nextData) {
if ( p->object == object ) {
// 链表中找到
result = p;
// atomic because may collide with concurrent RELEASE
// 当前线程是第一次加锁,线程数+1
OSAtomicIncrement32Barrier(&result->threadCount);
goto done;
}
if ( (firstUnused == NULL) && (p->threadCount == 0) )
firstUnused = p;
}
// no SyncData currently associated with object
if ( (why == RELEASE) || (why == CHECK) )
goto done;
// an unused one was found, use it
if ( firstUnused != NULL ) {
result = firstUnused;
result->object = (objc_object *)object;
result->threadCount = 1;
goto done;
}
}
......
}
- 当在链表中找到 SyncData 后,goto done,进入 done 方法,将找到的 SyncData 存入 快速缓存 与 缓存 中
2.3.5、初次加锁
缓存 和 全局Hash表StripedMap 中都找不到那么就是初次加锁了,这里对参数进行一些初始化操作,并new一个 recursive_mutex_t 递归锁
static SyncData* id2data(id object, enum usage why)
{
......
// Allocate a new SyncData and add to list.
// XXX allocating memory with a global lock held is bad practice,
// might be worth releasing the lock, allocating, and searching again.
// But since we never free these guys we won't be stuck in allocation very often.
posix_memalign((void **)&result, alignof(SyncData), sizeof(SyncData));
result->object = (objc_object *)object;
result->threadCount = 1;
new (&result->mutex) recursive_mutex_t(fork_unsafe_lock);
result->nextData = *listp;
*listp = result;
......
}
小结
-
缓存中查找流程:fetch_cache() --> _objc_pthread_data -->
syncCache(系统专门备注:// for @synchronize) -->syncCacheItem-->SyncData -
SyncData 为每一个 @synchronized 的参数object 分配了一把递归锁并记录有几个线程使用了block
-
@synchronized 的底层主要是找 链表SyncData,流程是:先找线程TSL中的快速缓存,再找TSL中的缓存,再找
全局Hash表StripedMap(系统分配的8或64张表),都找不到则进行初始化 -
threadCount 与 lockCount的区别 :
- threadCount :
记录的是有多少条线程加锁了block - lockCount :
记录的是单独一条线程加锁了多少次block(递归加锁在同一线程,但加了多次的锁)
- threadCount :