拷贝及视图
当对阵列进行操作时,阵列中的数据有时会改变有时则不会。下面来进行辨析:
一、完全不复制
简单的操作不会进行阵列复制。和python基础语法相似。
>>> a = np.array([[ 0, 1, 2, 3],
... [ 4, 5, 6, 7],
... [ 8, 9, 10, 11]])
>>> b = a # no new object is created,其实就是将a指针内容赋值给b,对b操作会改变a值
>>> b is a # a and b are two names for the same ndarray object
True
Python允许各种对象作为函数参数,所以函数也不会进行阵列复制。
>>> def f(x):
... print(id(x))
...
>>> id(a) # id is a unique identifier of an object
148293216 # may vary
>>> f(a)# 只有传址调用,没有传值调用
148293216 # may vary
二、查看或者浅复制
不同的阵列对象能共享数据,view方法能创建一个查看相同数据的阵列对象。也就是对阵列创建一个只能查看、修改阵列数据但不能修改阵列形状。
>>> c = a.view() # 创建 a 阵列的view对象, c 只能查看a的各项数据但不能做出形状更改
>>> c is a
False
>>> c.base is a # c is a view of the data owned by a
True
>>> c.flags.owndata
False
>>>
>>> c = c.reshape((2, 6)) # a's shape doesn't change
>>> a.shape
(3, 4)
>>> c[0, 4] = 1234 # a's data changes
>>> a
array([[ 0, 1, 2, 3],
[1234, 5, 6, 7],
[ 8, 9, 10, 11]])
对阵列进行切片会返回一个切片视图。
>>> s = a[:, 1:3] # s 是a的切片视图范围是 全行 - 1和2列
>>> s[:] = 10 # s[:] is a view of s.
# Note the difference between s = 10 and s[:] = 10, 前者会将 s 指向一个常数 10
>>> a
array([[ 0, 10, 10, 3],
[1234, 10, 10, 7],
[ 8, 10, 10, 11]])
三、全复制
copy方法提供了一个完全复制阵列的副本。
>>> d = a.copy() # a new array object with new data is created,a , b互不影响
>>> d is a
False
>>> d.base is a # d doesn't share anything with a, 不像 view
False
>>> d[0, 0] = 9999
>>> a
array([[ 0, 10, 10, 3],
[1234, 10, 10, 7],
[ 8, 10, 10, 11]])
有时完全复制会造成冗余。比如说,假如 a 是一个非常庞大的中间量,而最终结果 b 只会包含 a 很小的一部分,此时就应该进行切片复制而非完全复制。
>>> a = np.arange(int(1e8))
>>> b = a[:100].copy() # 切片复制,节省存储空间
>>> del a # the memory of ``a`` can be released.
函数和方法总览
- Array Creation
arange, array, copy, empty, empty_like, eye, fromfile, fromfunction, identity, linspace, logspace, mgrid, ogrid, ones, ones_like, r_, zeros, zeros_like
- Conversions
ndarray.astype, atleast_1d, atleast_2d, atleast_3d, mat
- Manipulations
array_split, column_stack, concatenate, diagonal, dsplit, dstack, hsplit, hstack, ndarray.item, newaxis, ravel, repeat, reshape, resize, squeeze, swapaxes, take, transpose, vsplit, vstack
- Questions
- Ordering
argmax, argmin, argsort, max, min, ptp, searchsorted, sort
- Operations
choose, compress, cumprod, cumsum, inner, ndarray.fill, imag, prod, put, putmask, real, sum
- Basic Statistics
- Basic Linear Algebra
cross, dot, outer, linalg.svd, vdot