第一步:将彩色图像从RGB转化到lab色彩空间
close all;
clear all;
clc;
I_rgb = imread('a.jpg');
figure(1);
%将彩色图像从RGB转化到lab色彩空间
C = makecform('srgb2lab');%设置转换格式
I_lab = applycform(I_rgb, C);
第二步:取出lab空间的a分量和b分量
ab = double(I_lab(:,:,2:3));
nrows = size(ab,1);
ncols = size(ab,2);
ab = reshape(ab,nrows*ncols,2);
第三步:设定分割的区域个数进行分割
nColors = 2; %分割的区域个数,可进行修改
[cluster_center,cluster_idx,mindist,q2,quality] = kmeanss(ab,nColors,2);
pixel_labels = reshape(cluster_idx,nrows,ncols);
figure(1);
imshow(pixel_labels,[],'border','tight','InitialMagnification','fit');
title('聚类结果');
其中的kmeanss如下:
function [centers,mincenter,mindist,q2,quality] = kmeanss(data,initcenters,method)
tic
if nargin < 3 method = 2; end
[n,dim] = size(data);
if max(size(initcenters)) == 1
k = initcenters;
[centers, mincenter, mindist, lower, computed] = anchors(mean(data),k,data);
total = computed;
skipestep = 1;
else
centers = initcenters;
mincenter = zeros(n,1);
total = 0;
skipestep = 0;
[k,dim2] = size(centers);
if dim ~= dim2 error('dim(data) ~= dim(centers)'); end;
end
nchanged = n;
iteration = 0;
oldmincenter = zeros(n,1);
while nchanged > 0
% do one E step, then one M step
computed = 0;
if method == 0 & ~skipestep
for i = 1:n
for j = 1:k
distmat(i,j) = calcdist(data(i,:),centers(j,:));
end
end
[mindist,mincenter] = min(distmat,[],2);
computed = k*n;
elseif (method == 1 | (method == 2 & iteration == 0)) & ~skipestep
mindist = Inf*ones(n,1);
lower = zeros(n,k);
for j = 1:k
jdist = calcdist(data,centers(j,:));
lower(:,j) = jdist;
track = find(jdist < mindist);
mindist(track) = jdist(track);
mincenter(track) = j;
end
computed = k*n;
elseif method == 2 & ~skipestep
computed = 0;
% for each center, nndist is half the distance to the nearest center
% if d(x,center) < nndist then x cannot belong to any other center
% mindist is an upper bound on the distance of each point to its nearest center
nndist = min(centdist,[],2);
% the following usually is not faster
% ldist = min(lower,[],2);
% mobile = find(mindist > max(nndist(mincenter),ldist));
mobile = find(mindist > nndist(mincenter));
% recompute distances for point i and center j
% only if j can possibly be the new nearest center
% for speed, the first check has been optimized by modifying centdist
% swapping the order of the checks is slower for data with natural clusters
mdm = mindist(mobile);
mcm = mincenter(mobile);
for j = 1:k
% the following is incorrect: for j = unique(mcm)'
track = find(mdm > centdist(mcm,j));
if isempty(track) continue; end
alt = find(mdm(track) > lower(mobile(track),j));
if isempty(alt) continue; end
track1 = mobile(track(alt));
% calculate exact distances to the mincenter
% recalculate separately for each jj to avoid copying too much of data
% redo may be empty, but we don't need to check this
redo = find(~recalculated(track1));
redo = track1(redo);
c = mincenter(redo);
computed = computed + size(redo,1);
for jj = unique(c)'
rp = redo(find(c == jj));
udist = calcdist(data(rp,:),centers(jj,:));
lower(rp,jj) = udist;
mindist(rp) = udist;
end
recalculated(redo) = 1;
track2 = find(mindist(track1) > centdist(mincenter(track1),j));
track1 = track1(track2);
if isempty(track1) continue; end
% calculate exact distances to center j
track4 = find(lower(track1,j) < mindist(track1));
if isempty(track4) continue; end
track5 = track1(track4);
jdist = calcdist(data(track5,:),centers(j,:));
computed = computed + size(track5,1);
lower(track5,j) = jdist;
% find which points really are assigned to center j
track2 = find(jdist < mindist(track5));
track3 = track5(track2);
mindist(track3) = jdist(track2);
mincenter(track3) = j;
end % for j=1:k
end % if method
oldcenters = centers;
diff = find(mincenter ~= oldmincenter);
diffj = unique([mincenter(diff);oldmincenter(diff)])';
diffj = diffj(find(diffj > 0));
if size(diff,1) < n/3 & iteration > 0
for j = diffj
plus = find(mincenter(diff) == j);
minus = find(oldmincenter(diff) == j);
oldpop = pop(j);
pop(j) = pop(j) + size(plus,1) - size(minus,1);
if pop(j) == 0 continue; end
centers(j,:) = (centers(j,:)*oldpop + sum(data(diff(plus),:),1) - sum(data(diff(minus),:),1))/pop(j);
end
else
for j = diffj
track = find(mincenter == j);
pop(j) = size(track,1);
if pop(j) == 0 continue; end
% it's correct to have mean(data(track,:),1) but this can make answer worse!
centers(j,:) = mean(data(track,:),1);
end
end
if method == 2
for j = diffj
offset = calcdist(centers(j,:),oldcenters(j,:));
computed = computed + 1;
if offset == 0 continue; end
track = find(mincenter == j);
mindist(track) = mindist(track) + offset;
lower(:,j) = max(lower(:,j) - offset,0);
end
recalculated = zeros(n,1);
realdist = alldist(centers);
centdist = 0.5*realdist + diag(Inf*ones(k,1));
computed = computed + k + k*(k-1)/2;
end
nchanged = size(diff,1) + skipestep;
iteration = iteration+1;
skipestep = 0;
oldmincenter = mincenter;
[iteration toc nchanged computed]
total = total + computed;
end % while nchanged > 0
udist = calcdist(data,centers(mincenter,:));
quality = mean(udist);
q2 = mean(udist.^2);
[iteration toc quality q2 total]
在kmeanss 中的calcdist如下所示:
function distances = calcdist(data,center)
% input: vector of data points, single center or multiple centers
% output: vector of distances
[n,dim] = size(data);
[n2,dim2] = size(center);
% Using repmat is slower than using ones(n,1)
% delta = data - repmat(center,n,1);
% delta = data - center(ones(n,1),:);
% The following is fastest: not duplicating the center at all
if n2 == 1
distances = sum(data.^2, 2) - 2*data*center' + center*center';
elseif n2 == n
distances = sum( (data - center).^2 ,2);
else
error('bad number of centers');
end
% Euclidean 2-norm distance:
distances = sqrt(distances);
% Inf-norm distance:
% distances = max(abs(distances),[],2);
在kmeanss 中的anchors如下所示:
function [centers, mincenter, mindist, lower, computed] = anchors(firstcenter,k,data)
% choose k centers by the furthest-first method
[n,dim] = size(data);
centers = zeros(k,dim);
lower = zeros(n,k);
mindist = Inf*ones(n,1);
mincenter = ones(n,1);
computed = 0;
centdist = zeros(k,k);
for j = 1:k
if j == 1
newcenter = firstcenter;
else
[maxradius,i] = max(mindist);
newcenter = data(i,:);
end
centers(j,:) = newcenter;
centdist(1:j-1,j) = calcdist(centers(1:j-1,:),newcenter);
centdist(j,1:j-1) = centdist(1:j-1,j)';
computed = computed + j-1;
inplay = find(mindist > centdist(mincenter,j)/2);
newdist = calcdist(data(inplay,:),newcenter);
computed = computed + size(inplay,1);
lower(inplay,j) = newdist;
move = find(newdist < mindist(inplay));
shift = inplay(move);
mincenter(shift) = j;
mindist(shift) = newdist(move);
end
在kmeanss 中的alldist如下所示:
function centdist = alldist(centers)
% output: matrix of all pairwise distances
% input: data points (centers)
k = size(centers,1);
centdist = zeros(k,k);
for j = 1:k
centdist(1:j-1,j) = calcdist(centers(1:j-1,:),centers(j,:));
end
centdist = centdist+centdist';
第四步:显示分割后的各个区域
dst = cell(1,nColors);
rgb_label = repmat(pixel_labels,[1 1 3]);
for k = 1:nColors
color = I_rgb;
color(rgb_label ~= k) = 0;
dst{k} = color;
end
for i=1:nColors
figure(i+2);
imshow(dst{i});
title('分割结果');
end