vue 3.2.26 源码解读(三)diff算法原理

562 阅读2分钟

vue 3.2.26 源码解读(一)reactivity响应式
vue 3.2.26 源码解读(二)初始化渲染
vue 3.2.26 源码解读(三)diff算法原理

demo

我们接着上篇文章vue 3.2.26 源码解读(二)初始化渲染的demo

const {reactive, h} = Vue;
Vue.createApp({
    setup() {
        const a = reactive({arr: [1,2,3,4,5,6,7]});
        return () => {
            const  lis = a.arr.map((item)=>{
                return h('li', {
                    key: item
                }, item)
            });
            return h('ul', {
                onclick: ()=>{
                    a.arr = [1, 6, 2, 4, 3, 5, 7]
                }
            }, lis)
        }
    }
}).mount('#demo')

更新原理

当我们触发点击事件后,会导致a.arr的修改,根据我第一篇响应式原理,此时会执行effect执行,我们来回顾一下effect:

const effect = (instance.effect = new ReactiveEffect(
  componentUpdateFn,
  () => queueJob(instance.update),
  instance.scope // track it in component's effect scope
))

const update = (instance.update = effect.run.bind(effect) as SchedulerJob)

由于我们传入了scheduler,所以effect执行的是该方法

queueJob

  1. 将所有update推入队列
  2. 在微任务中异步执行

const queue: SchedulerJob[] = []
const resolvedPromise: Promise<any> = Promise.resolve()

export function queueJob(job: SchedulerJob) {
  // the dedupe search uses the startIndex argument of Array.includes()
  // by default the search index includes the current job that is being run
  // so it cannot recursively trigger itself again.
  // if the job is a watch() callback, the search will start with a +1 index to
  // allow it recursively trigger itself - it is the user's responsibility to
  // ensure it doesn't end up in an infinite loop.
  if (
    (!queue.length ||
      !queue.includes(
        job,
        isFlushing && job.allowRecurse ? flushIndex + 1 : flushIndex
      )) &&
    job !== currentPreFlushParentJob
  ) {
    if (job.id == null) {
      queue.push(job)
    } else {
      queue.splice(findInsertionIndex(job.id), 0, job)
    }
    queueFlush()
  }
}

function queueFlush() {
  if (!isFlushing && !isFlushPending) {
    isFlushPending = true
    currentFlushPromise = resolvedPromise.then(flushJobs)
  }
}

flushJobs

  1. 初始化状态
  2. job排序
  3. 依次执行job,即update函数,即componentUpdateFn
function flushJobs(seen?: CountMap) {
  isFlushPending = false
  isFlushing = true

  flushPreFlushCbs(seen)

  // Sort queue before flush.
  // This ensures that:
  // 1. Components are updated from parent to child. (because parent is always
  //    created before the child so its render effect will have smaller
  //    priority number)
  // 2. If a component is unmounted during a parent component's update,
  //    its update can be skipped.
  queue.sort((a, b) => getId(a) - getId(b))

  // conditional usage of checkRecursiveUpdate must be determined out of
  // try ... catch block since Rollup by default de-optimizes treeshaking
  // inside try-catch. This can leave all warning code unshaked. Although
  // they would get eventually shaken by a minifier like terser, some minifiers
  // would fail to do that (e.g. https://github.com/evanw/esbuild/issues/1610)
  const check = __DEV__
    ? (job: SchedulerJob) => checkRecursiveUpdates(seen!, job)
    : NOOP

  try {
    for (flushIndex = 0; flushIndex < queue.length; flushIndex++) {
      const job = queue[flushIndex]
      if (job && job.active !== false) {
        if (__DEV__ && check(job)) {
          continue
        }
        // console.log(`running:`, job.id)
        callWithErrorHandling(job, null, ErrorCodes.SCHEDULER)
      }
    }
  } finally {
    flushIndex = 0
    queue.length = 0

    flushPostFlushCbs(seen)

    isFlushing = false
    currentFlushPromise = null
    // some postFlushCb queued jobs!
    // keep flushing until it drains.
    if (
      queue.length ||
      pendingPreFlushCbs.length ||
      pendingPostFlushCbs.length
    ) {
      flushJobs(seen)
    }
  }
}

patchKeyedChildren

当我们执行到componentUpdateFn时,与初始化逻辑唯一不同的便是要走更新方法。以下就是diff的核心方法。

依次按照以下逻辑执行:

  1. 顺序比对
  2. 倒序比对
  3. 新增
  4. 移除
  5. 乱序(我们重点来看这种比较)

eg:

  • old: [1, 2, 3, 4, 5, 6, 7]
  • new: [1, 6, 2, 4, 3, 5, 7]
  1. 顺序比对 [2, 3, 4, 5, 6, 7]
    [6, 2, 4, 3, 5, 7]

  2. 倒序比对 [2, 3, 4, 5, 6]
    [6, 2, 4, 3, 5]

  3. 新增、移除(当前demo不符合条件,数组不变) [2, 3, 4, 5, 6]
    [6, 2, 4, 3, 5]

  4. 乱序

  • 将没有比对的老节点使用keyToNewIndexMap.set(nextChild.key, i)保存,key是组件key属性,value为数组下标
  • 拿到新节点在老节点中的下标[5, 1, 3, 2, 4]若新数组没有值则使用-1代替
  • 找到当前最长递增子序列[1, 3, 4]对应的元素[2, 4, 5]不用移动
  • 移动剩下的节点元素,从而减少移动次数
// can be all-keyed or mixed
const patchKeyedChildren = (
  c1: VNode[],
  c2: VNodeArrayChildren,
  container: RendererElement,
  parentAnchor: RendererNode | null,
  parentComponent: ComponentInternalInstance | null,
  parentSuspense: SuspenseBoundary | null,
  isSVG: boolean,
  slotScopeIds: string[] | null,
  optimized: boolean
) => {
  let i = 0
  const l2 = c2.length
  let e1 = c1.length - 1 // prev ending index
  let e2 = l2 - 1 // next ending index

  // 1. sync from start
  // (a b) c
  // (a b) d e
  while (i <= e1 && i <= e2) {
    const n1 = c1[i]
    const n2 = (c2[i] = optimized
      ? cloneIfMounted(c2[i] as VNode)
      : normalizeVNode(c2[i]))
    if (isSameVNodeType(n1, n2)) {
      patch(
        n1,
        n2,
        container,
        null,
        parentComponent,
        parentSuspense,
        isSVG,
        slotScopeIds,
        optimized
      )
    } else {
      break
    }
    i++
  }

  // 2. sync from end
  // a (b c)
  // d e (b c)
  while (i <= e1 && i <= e2) {
    const n1 = c1[e1]
    const n2 = (c2[e2] = optimized
      ? cloneIfMounted(c2[e2] as VNode)
      : normalizeVNode(c2[e2]))
    if (isSameVNodeType(n1, n2)) {
      patch(
        n1,
        n2,
        container,
        null,
        parentComponent,
        parentSuspense,
        isSVG,
        slotScopeIds,
        optimized
      )
    } else {
      break
    }
    e1--
    e2--
  }

  // 3. common sequence + mount
  // (a b)
  // (a b) c
  // i = 2, e1 = 1, e2 = 2
  // (a b)
  // c (a b)
  // i = 0, e1 = -1, e2 = 0
  if (i > e1) {
    if (i <= e2) {
      const nextPos = e2 + 1
      const anchor = nextPos < l2 ? (c2[nextPos] as VNode).el : parentAnchor
      while (i <= e2) {
        patch(
          null,
          (c2[i] = optimized
            ? cloneIfMounted(c2[i] as VNode)
            : normalizeVNode(c2[i])),
          container,
          anchor,
          parentComponent,
          parentSuspense,
          isSVG,
          slotScopeIds,
          optimized
        )
        i++
      }
    }
  }

  // 4. common sequence + unmount
  // (a b) c
  // (a b)
  // i = 2, e1 = 2, e2 = 1
  // a (b c)
  // (b c)
  // i = 0, e1 = 0, e2 = -1
  else if (i > e2) {
    while (i <= e1) {
      unmount(c1[i], parentComponent, parentSuspense, true)
      i++
    }
  }

  // 5. unknown sequence
  // [i ... e1 + 1]: a b [c d e] f g
  // [i ... e2 + 1]: a b [e d c h] f g
  // i = 2, e1 = 4, e2 = 5
  else {
    const s1 = i // prev starting index
    const s2 = i // next starting index

    // 5.1 build key:index map for newChildren
    const keyToNewIndexMap: Map<string | number | symbol, number> = new Map()
    for (i = s2; i <= e2; i++) {
      const nextChild = (c2[i] = optimized
        ? cloneIfMounted(c2[i] as VNode)
        : normalizeVNode(c2[i]))
      if (nextChild.key != null) {
        if (__DEV__ && keyToNewIndexMap.has(nextChild.key)) {
          warn(
            `Duplicate keys found during update:`,
            JSON.stringify(nextChild.key),
            `Make sure keys are unique.`
          )
        }
        keyToNewIndexMap.set(nextChild.key, i)
      }
    }

    // 5.2 loop through old children left to be patched and try to patch
    // matching nodes & remove nodes that are no longer present
    let j
    let patched = 0
    const toBePatched = e2 - s2 + 1
    let moved = false
    // used to track whether any node has moved
    let maxNewIndexSoFar = 0
    // works as Map<newIndex, oldIndex>
    // Note that oldIndex is offset by +1
    // and oldIndex = 0 is a special value indicating the new node has
    // no corresponding old node.
    // used for determining longest stable subsequence
    const newIndexToOldIndexMap = new Array(toBePatched)
    for (i = 0; i < toBePatched; i++) newIndexToOldIndexMap[i] = 0

    for (i = s1; i <= e1; i++) {
      const prevChild = c1[i]
      if (patched >= toBePatched) {
        // all new children have been patched so this can only be a removal
        unmount(prevChild, parentComponent, parentSuspense, true)
        continue
      }
      let newIndex
      if (prevChild.key != null) {
        newIndex = keyToNewIndexMap.get(prevChild.key)
      } else {
        // key-less node, try to locate a key-less node of the same type
        for (j = s2; j <= e2; j++) {
          if (
            newIndexToOldIndexMap[j - s2] === 0 &&
            isSameVNodeType(prevChild, c2[j] as VNode)
          ) {
            newIndex = j
            break
          }
        }
      }
      if (newIndex === undefined) {
        unmount(prevChild, parentComponent, parentSuspense, true)
      } else {
        newIndexToOldIndexMap[newIndex - s2] = i + 1
        if (newIndex >= maxNewIndexSoFar) {
          maxNewIndexSoFar = newIndex
        } else {
          moved = true
        }
        patch(
          prevChild,
          c2[newIndex] as VNode,
          container,
          null,
          parentComponent,
          parentSuspense,
          isSVG,
          slotScopeIds,
          optimized
        )
        patched++
      }
    }

    // 5.3 move and mount
    // generate longest stable subsequence only when nodes have moved
    const increasingNewIndexSequence = moved
      ? getSequence(newIndexToOldIndexMap)
      : EMPTY_ARR
    j = increasingNewIndexSequence.length - 1
    // looping backwards so that we can use last patched node as anchor
    for (i = toBePatched - 1; i >= 0; i--) {
      const nextIndex = s2 + i
      const nextChild = c2[nextIndex] as VNode
      const anchor =
        nextIndex + 1 < l2 ? (c2[nextIndex + 1] as VNode).el : parentAnchor
      if (newIndexToOldIndexMap[i] === 0) {
        // mount new
        patch(
          null,
          nextChild,
          container,
          anchor,
          parentComponent,
          parentSuspense,
          isSVG,
          slotScopeIds,
          optimized
        )
      } else if (moved) {
        // move if:
        // There is no stable subsequence (e.g. a reverse)
        // OR current node is not among the stable sequence
        if (j < 0 || i !== increasingNewIndexSequence[j]) {
          move(nextChild, container, anchor, MoveType.REORDER)
        } else {
          j--
        }
      }
    }
  }
}