微软和谷歌的几个大佬组织了一个面试刷题群,可以加管理员VX:sxxzs3998(备注掘金),进群参与讨论和直播
看此文之前建议先看前文 【微软算法面试高频题】改编twoSum 问题| 8月更文挑战
一、threeSum
这是 LeetCode 第 15 题:
这个问题怎么解决呢?很简单,穷举呗。现在我们想找和为 target 的三个数字,那么对于第一个数字,可能是什么?nums 中的每一个元素 nums[i] 都有可能!
那么,确定了第一个数字之后,剩下的两个数字可以是什么呢?其实就是和为target - nums[i] 的两个数字呗,那不就是 twoSum 函数解决的问题么🤔
可以直接写代码了,需要把 twoSum 函数稍作修改即可复用:
/* 从 nums[start] 开始,计算有序数组
* nums 中所有和为 target 的二元组 */
vector<vector<int>> twoSumTarget(
vector<int>& nums, int start, int target) {
// 左指针改为从 start 开始,其他不变
int lo = start, hi = nums.size() - 1;
vector<vector<int>> res;
while (lo < hi) {
...
}
return res;
}
/* 计算数组 nums 中所有和为 target 的三元组 */
vector<vector<int>> threeSumTarget(vector<int>& nums, int target) {
// 数组得排个序
sort(nums.begin(), nums.end());
int n = nums.size();
vector<vector<int>> res;
// 穷举 threeSum 的第一个数
for (int i = 0; i < n; i++) {
// 对 target - nums[i] 计算 twoSum
vector<vector<int>>
tuples = twoSumTarget(nums, i + 1, target - nums[i]);
// 如果存在满足条件的二元组,再加上 nums[i] 就是结果三元组
for (vector<int>& tuple : tuples) {
tuple.push_back(nums[i]);
res.push_back(tuple);
}
// 跳过第一个数字重复的情况,否则会出现重复结果
while (i < n - 1 && nums[i] == nums[i + 1]) i++;
}
return res;
}
需要注意的是,类似 twoSum,3Sum 的结果也可能重复,比如输入是 nums = [1,1,1,2,3], target = 6,结果就会重复。
关键点在于,不能让第一个数重复,至于后面的两个数,我们复用的 twoSum函数会保证它们不重复。所以代码中必须用一个 while 循环来保证 3Sum 中第一个元素不重复。
至此,3Sum 问题就解决了,时间复杂度不难算,排序的复杂度为O(NlogN),twoSumTarget 函数中的双指针操作为O(N),threeSumTarget 函数在 for 循环中调用 twoSumTarget 所以总的时间复杂度就是 O(NlogN + N^2) = O(N^2)。
二、fourSum
这是力扣第 18 题「四数之和」:
4Sum 完全就可以用相同的思路:穷举第一个数字,然后调用3Sum 函数计算剩下三个数,最后组合出和为 target 的四元组。
vector<vector<int>> fourSum(vector<int>& nums, int target) {
// 数组需要排序
sort(nums.begin(), nums.end());
int n = nums.size();
vector<vector<int>> res;
// 穷举 fourSum 的第一个数
for (int i = 0; i < n; i++) {
// 对 target - nums[i] 计算 threeSum
vector<vector<int>>
triples = threeSumTarget(nums, i + 1, target - nums[i]);
// 如果存在满足条件的三元组,再加上 nums[i] 就是结果四元组
for (vector<int>& triple : triples) {
triple.push_back(nums[i]);
res.push_back(triple);
}
// fourSum 的第一个数不能重复
while (i < n - 1 && nums[i] == nums[i + 1]) i++;
}
return res;
}
/* 从 nums[start] 开始,计算有序数组
* nums 中所有和为 target 的三元组 */
vector<vector<int>>
threeSumTarget(vector<int>& nums, int start, int target) {
int n = nums.size();
vector<vector<int>> res;
// i 从 start 开始穷举,其他都不变
for (int i = start; i < n; i++) {
...
}
return res;
这样,按照相同的套路,4Sum 问题就解决了,时间复杂度的分析和之前类似,for 循环中调用了 threeSumTarget 函数,所以总的时间复杂度就是O(N^3)。
三、nSum
如果我让你求 100Sum 问题,怎么办呢?其实我们可以观察上面这些解法,统一出一个 nSum 函数:
/* 注意:调用这个函数之前一定要先给 nums 排序 */
vector<vector<int>> nSumTarget(
vector<int>& nums, int n, int start, int target) {
int sz = nums.size();
vector<vector<int>> res;
// 至少是 2Sum,且数组大小不应该小于 n
if (n < 2 || sz < n) return res;
// 2Sum 是 base case
if (n == 2) {
// 双指针那一套操作
int lo = start, hi = sz - 1;
while (lo < hi) {
int sum = nums[lo] + nums[hi];
int left = nums[lo], right = nums[hi];
if (sum < target) {
while (lo < hi && nums[lo] == left) lo++;
} else if (sum > target) {
while (lo < hi && nums[hi] == right) hi--;
} else {
res.push_back({left, right});
while (lo < hi && nums[lo] == left) lo++;
while (lo < hi && nums[hi] == right) hi--;
}
}
} else {
// n > 2 时,递归计算 (n-1)Sum 的结果
for (int i = start; i < sz; i++) {
vector<vector<int>>
sub = nSumTarget(nums, n - 1, i + 1, target - nums[i]);
for (vector<int>& arr : sub) {
// (n-1)Sum 加上 nums[i] 就是 nSum
arr.push_back(nums[i]);
res.push_back(arr);
}
while (i < sz - 1 && nums[i] == nums[i + 1]) i++;
}
}
return res;
}
嗯,看起来很长,实际上就是把之前的题目解法合并起来了,n == 2 时是twoSum 的双指针解法,n > 2 时就是穷举第一个数字,然后递归调用计算(n-1)Sum,组装答案。
需要注意的是,调用这个 nSum 函数之前一定要先给 nums 数组排序,因为nSum 是一个递归函数,如果在 nSum 函数里调用排序函数,那么每次递归都会进行没有必要的排序,效率会非常低。
微软和谷歌的几个大佬组织了一个面试刷题群,可以加管理员VX:sxxzs3998(备注掘金),进群参与讨论和直播