反射方程

镜面反射部分

简化 分割求和近似法

简化
- 代入F菲涅尔方程 简化方程






- 由于 f(p,ωi,ωo) 已经包含 F 项,它们被约分了,这里的 f 中不计算 F 项。

BRDF积分贴图

- 2D 查找纹理存储是菲涅耳响应的系数(R 通道)和偏差值(G 通道)
- 以 BRDF 的输入n⋅ωi(范围在 0.0 和 1.0 之间)作为横坐标,以粗糙度作为纵坐标
- 这里很多计算方式跨度有点大

export var vs_brdf =
`#version 300 es
precision mediump float;
layout (location = 0) in vec3 aPos;
//D3Q: location 1 introduced because of code in renderQuad()
layout (location = 1) in vec3 aColor;
layout (location = 2) in vec2 aTexCoords;
out vec2 TexCoords;
void main()
{
TexCoords = aTexCoords;
gl_Position = vec4(aPos, 1.0);
}`
export var fs_brdf =
`#version 300 es
precision mediump float;
out vec2 FragColor;
in vec2 TexCoords;
const float PI = 3.14159265359;
// ----------------------------------------------------------------------------
// http://holger.dammertz.org/stuff/notes_HammersleyOnHemisphere.html
// efficient VanDerCorpus calculation.
float RadicalInverse_VdC(uint bits)
{
bits = (bits << 16u) | (bits >> 16u);
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
return float(bits) * 2.3283064365386963e-10; // / 0x100000000
}
// ----------------------------------------------------------------------------
vec2 Hammersley(uint i, uint N)
{
return vec2(float(i)/float(N), RadicalInverse_VdC(i));
}
// ----------------------------------------------------------------------------
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness)
{
float a = roughness*roughness;
float phi = 2.0 * PI * Xi.x;
float cosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a*a - 1.0) * Xi.y));
float sinTheta = sqrt(1.0 - cosTheta*cosTheta);
// from spherical coordinates to cartesian coordinates - halfway vector
vec3 H;
H.x = cos(phi) * sinTheta;
H.y = sin(phi) * sinTheta;
H.z = cosTheta;
// from tangent-space H vector to world-space sample vector
vec3 up = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
vec3 tangent = normalize(cross(up, N));
vec3 bitangent = cross(N, tangent);
vec3 sampleVec = tangent * H.x + bitangent * H.y + N * H.z;
return normalize(sampleVec);
}
// ----------------------------------------------------------------------------
float GeometrySchlickGGX(float NdotV, float roughness)
{
// note that we use a different k for IBL
float a = roughness;
float k = (a * a) / 2.0;
float nom = NdotV;
float denom = NdotV * (1.0 - k) + k;
return nom / denom;
}
// ----------------------------------------------------------------------------
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{
float NdotV = max(dot(N, V), 0.0);
float NdotL = max(dot(N, L), 0.0);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
// ----------------------------------------------------------------------------
vec2 IntegrateBRDF(float NdotV, float roughness)
{
vec3 V;
V.x = sqrt(1.0 - NdotV*NdotV);
V.y = 0.0;
V.z = NdotV;
float A = 0.0;
float B = 0.0;
vec3 N = vec3(0.0, 0.0, 1.0);
const uint SAMPLE_COUNT = 1024u;
for(uint i = 0u; i < SAMPLE_COUNT; ++i)
{
// generates a sample vector that's biased towards the
// preferred alignment direction (importance sampling).
vec2 Xi = Hammersley(i, SAMPLE_COUNT);
vec3 H = ImportanceSampleGGX(Xi, N, roughness);
vec3 L = normalize(2.0 * dot(V, H) * H - V);
float NdotL = max(L.z, 0.0);
float NdotH = max(H.z, 0.0);
float VdotH = max(dot(V, H), 0.0);
if(NdotL > 0.0)
{
float G = GeometrySmith(N, V, L, roughness);
float G_Vis = (G * VdotH) / (NdotH * NdotV);
float Fc = pow(1.0 - VdotH, 5.0); .//5次方 这个是公式里的
A += (1.0 - Fc) * G_Vis;
B += Fc * G_Vis;
}
}
A /= float(SAMPLE_COUNT);
B /= float(SAMPLE_COUNT);
return vec2(A, B);
}
// ----------------------------------------------------------------------------
void main()
{
vec2 integratedBRDF = IntegrateBRDF(TexCoords.x, TexCoords.y);
FragColor = integratedBRDF;
}`
- FBO生成贴图 brdfLUTTexture
- 注意 whCube 出现的地方
const sizeFloat = 4;
const whCube = 512;
const ext = gl.getExtension("EXT_color_buffer_float");
let brdfShader = null;
let textureShader = null;
let quadVAO = null;
let captureFBO = null;
let brdfLUTTexture = null;
let error;
let main = function () {
brdfShader = new Shader(gl, vs_brdf, fs_brdf);
brdfLUTTexture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, brdfLUTTexture);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RG16F, whCube, whCube, 0, gl.RG, gl.FLOAT, new Float32Array(whCube * whCube * 2), 0);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);
let captureRBO = gl.createRenderbuffer();
captureFBO = gl.createFramebuffer();
gl.bindFramebuffer(gl.FRAMEBUFFER, captureFBO);
gl.bindRenderbuffer(gl.RENDERBUFFER, captureRBO);
gl.renderbufferStorage(gl.RENDERBUFFER, gl.DEPTH_COMPONENT24, whCube, whCube);
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, brdfLUTTexture, 0);
gl.viewport(0, 0, whCube, whCube);
brdfShader.use(gl);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
renderQuad();
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
let vs_texture = `#version 300 es
precision mediump float;
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aColor;
layout (location = 2) in vec2 aTexCoord;
out vec3 ourColor;
out vec2 TexCoord;
void main()
{
gl_Position = vec4(aPos, 1.0);
ourColor = aColor;
TexCoord = aTexCoord;
}`;
let fs_texture = `#version 300 es
precision mediump float;
out vec4 FragColor;
in vec3 ourColor;
in vec2 TexCoord;
uniform sampler2D ourTexture;
void main()
{
//D3Q: test. FragColor = vec4(ourColor, 1.0); //texture(ourTexture, TexCoord);
FragColor = texture(ourTexture, TexCoord);
}`;
textureShader = new Shader(gl, vs_texture, fs_texture);
textureShader.use(gl);
textureShader.setInt(gl, "ourTexture", 0);
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, brdfLUTTexture);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
renderQuad();
}();
function renderQuad() {
if (!quadVAO) {
let vertices = new Float32Array([
-1.0, -1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0,
1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0,
1.0, -1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0,
1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0,
-1.0, -1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0,
-1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0,
]);
quadVAO = gl.createVertexArray();
let quadVBO = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, quadVBO);
gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);
gl.bindVertexArray(quadVAO);
gl.enableVertexAttribArray(0);
gl.vertexAttribPointer(0, 3, gl.FLOAT, false, 8 * sizeFloat, 0);
gl.enableVertexAttribArray(1);
gl.vertexAttribPointer(1, 3, gl.FLOAT, false, 8 * sizeFloat, (3 * sizeFloat));
gl.enableVertexAttribArray(2);
gl.vertexAttribPointer(2, 2, gl.FLOAT, false, 8 * sizeFloat, (6 * sizeFloat));
gl.bindBuffer(gl.ARRAY_BUFFER, null);
gl.bindVertexArray(null);
}
gl.bindVertexArray(quadVAO);
gl.drawArrays(gl.TRIANGLES, 0, 6);
gl.bindVertexArray(null);
}