【神经网络扩展】:断点续训和参数提取

269 阅读2分钟

课程来源:人工智能实践:Tensorflow笔记2

文章目录


前言

本讲目标:断点续训,存取最优模型;保存可训练参数至文本


断点续训主要步骤

读取模型:

先定义出存放模型的路径和文件名,命名为.ckpt文件。
生成ckpt文件的时候会同步生成索引表,所以通过判断是否存在索引表来知晓是不是已经保存过模型参数。
如果有了索引表就利用load_weights函数读取已经保存的模型参数。

code:


checkpoint_save_path = "./checkpoint/fashion.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)

在这里插入图片描述

保存模型:

保存模型参数可以使用TensorFlow给出的回调函数,直接保存训练出来的模型参数
tf.keras.callbacks.ModelCheckpoint( filepath=路径文件名(文件存储路径),
save_weights_only=True/False,(是否只保留参数模型)
save_best_only=True/False(是否只保留最优结果)) 执行训练过程中时,加入callbacks选项:
history=model.fit(callbacks=[cp_callback])

code:

cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)

history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                    callbacks=[cp_callback])

第一次运行:
在这里插入图片描述
第二次运行:可以发现模型并不是从初始训练,而是在基于保存的模型开始训练的(这一点可以从准确率和损失看出):
在这里插入图片描述
全部代码:

import tensorflow as tf
import os

fashion = tf.keras.datasets.fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])


checkpoint_save_path = "./checkpoint/fashion.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)

cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)

history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                    callbacks=[cp_callback])
model.summary()

参数提取主要步骤

设置打印的格式,使所有参数都打印出来

np.set_printoptions(threshold=np.inf)
print(model.trainable_variables)

将所有可训练参数存入文本:

file = open('./weights.txt', 'w')
for v in model.trainable_variables:
    file.write(str(v.name) + '\n')
    file.write(str(v.shape) + '\n')
    file.write(str(v.numpy()) + '\n')
file.close()

完整代码:

import tensorflow as tf
import os
import numpy as np

np.set_printoptions(threshold=np.inf)

fashion = tf.keras.datasets.fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

checkpoint_save_path = "./checkpoint/fashion.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)

cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)

history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                    callbacks=[cp_callback])
model.summary()

print(model.trainable_variables)
file = open('./weights.txt', 'w')
for v in model.trainable_variables:
    file.write(str(v.name) + '\n')
    file.write(str(v.shape) + '\n')
    file.write(str(v.numpy()) + '\n')
file.close()

效果:
在这里插入图片描述

总结

课程链接:MOOC人工智能实践:TensorFlow笔记2